
The MakeCookbook Bundle
Make a Cookbook Using LATEX

Terrence P. Murphy Rosalie A. D’Amico

December 2, 2018

Contents

I Introduction 4

1 About 4

2 Preliminaries 4
2.1 Requirements . 4

2.1.1 Compiler . 4
2.1.2 Fonts . 4

2.2 License . 4
2.3 Contact Information / Feedback . 5
2.4 Version Information / Change History . 5
2.5 The LATEX Community / StackExchange . 5

3 Installing makecookbook 5

4 How This Document is Organized 6

II Managing/Organizing Your Cookbook Files 7

III Elements of a Book/Cookbook 8

1 Elements of a Book 8

2 Elements of a Cookbook 8

IV Elements of a Book – the Details 9

1 Terminology 9

2 Trim Size and Margins 9

3 Headers and Footers 10

4 Chapter Title Formatting 11

1

5 Odds and Ends 12
5.1 Color . 12
5.2 Drop Cap . 12
5.3 Images/Photos . 13

6 Front Matter, Main Matter and Back Matter 14
6.1 Introduction . 14
6.2 Front Matter . 14

6.2.1 Title Page . 14
6.2.2 Copyright Page . 14
6.2.3 Dedication . 14
6.2.4 Table of Contents . 14
6.2.5 Other . 14

6.3 Main Matter . 14
6.4 Back Matter . 14

V Elements of a Book – the Details (Fonts) 16

1 Introduction 16
1.1 Fonts . 16

2 Line Length and Font Size 16

3 Our Selected Fonts 17
3.1 Serif Font . 17
3.2 Sans Serif Font . 18
3.3 Script . 18

4 Code to Implement our Font Usage 18
4.1 Load Our Fonts . 18
4.2 Handle Special Font Faces . 20
4.3 Commands to Select Our Fonts . 20
4.4 Special Handling of Fractions . 20
4.5 Commands for Certain Glyphs . 21
4.6 Point Size of Default Roman and Sans Fonts . 21

VI Elements of a Cookbook – the Details 22

1 Chapter Introduction 22

2 Recipe Name and Yield 22

3 Recipe Story 23

4 Ingredients and Steps 23
4.1 The IngredientsAndSteps Environment . 24
4.2 The \ListIngredientsAndSteps Command . 24

5 Attribution 25

6 Additional Comments/Advice 25

7 Odds and Ends 26
7.1 Various Simple but Useful Commands/Defines . 26
7.2 \BakeUntil . 27
7.3 A Few Other Commands . 28

2

8 Handling of Long Recipes 28
8.1 The “Real” \RecipeStory Command . 29
8.2 The “Real” IngredientsAndSteps Environment . 29

9 Adding Images in the Chapter Intro 31
9.1 The “Real” \ChapterIntro Command . 31

VII The PDF File 32

1 The Digital Cookbook 32

2 The Print-On-Demand Cookbook 32
2.1 Embedded Fonts . 33
2.2 Bookmarks, Annotations, and Comments . 33
2.3 Trim Size, Crop Marks and Other Printer’s Marks . 33
2.4 PDF/X . 34
2.5 Other Print-on-Demand Issues . 34

VIII Examples 35

1 \RecipeNameAndYield Command 35
1.1 Recipe A . 35
1.2 Recipe B . 35
1.3 Recipe C . 35
1.4 Recipe D . 35

2 \RecipeStory Command 36
2.1 Recipe A . 36
2.2 Recipe E . 36

3 IngredientsAndSteps Environment 36
3.1 Recipe A . 36
3.2 Recipe F . 36

4 \ListIngredientsAndSteps Command 36
4.1 Recipe A . 36
4.2 Recipe F . 37
4.3 Recipe I . 37
4.4 Recipes B, C and G . 38

5 \ChapterIntro Command 38
5.1 Chapter One . 38
5.2 Chapter Two . 38

3

Part I

Introduction
1 About
The makecookbook bundle contains the files needed to create a nice quality family cookbook in a form ready
to submit to most print-on-demand companies. Modifiable choices have been made regarding standard book
features such as trim size, margins, headers/footers, chapter heading formatting, front matter (copyright
page, table of contents, etc.) and back matter (index). Commands and environments have been created to
format the food stories and recipes. The user will need to: (1) supply their own food stories and recipes(!),
and (2) select (install if necessary) the needed fonts.

The design, layout and typography for cookbooks varies substantially, so we necessarily take a “point of
view” on the desired look of the cookbook. However, even if your goal is a significantly different layout, you
may find this work helpful in thinking through and implementing your design.

Please note that no new document class or package is included here. Rather, we provide a modifiable
preamble and a small number of other files that, together, fully support creation of all of the internal pages
of a cookbook (i.e., everything except the cover art). We may refer to the makecookbook “package” in this
documentation – by that we mean package in a broader sense and do not mean an actual .sty style package.

2 Preliminaries

2.1 Requirements
2.1.1 Compiler
The makecookbook bundle uses the fontspec package. That means it must be compiled with either

LuaTEX or XeTEX. We have only tested with LuaTEX. However, we have not used Lua code, so we expect
you should be successful (after a possible tweak or two) with an XeTEX compile.

2.1.2 Fonts
The makecookbook bundle assumes you have installed the three fonts listed below. (All are licensed

under the SIL Open Font License, Version 1.1). To have a successful compile “out of the box”, these fonts
must be installed on your system:

Serif EB Garamond TrueType Version from Google Fonts
Sans Serif Lato TrueType Version from www.latofonts.com
Script Italianno OpenType Version from Google Fonts

Please note: we assume that the EB Garamond and Italianno fonts were obtained from Google Fonts, and
that the Lato font was obtained from http://www.latofonts.com. These fonts do not required installation
of any font-related packgages other than fontspec.

Beginning on page 16, we discuss how you can easily substitute your own favorite OpenType (including
TrueType flavored) fonts, subject only to certain requirements regarding feature set.

2.2 License
Copyright © 2018 Terrence P. Murphy and Rosalie A. D’Amico. This work may be distributed and/or
modified under the conditions of the LATEX Project Public License (“LPPL”), either version 1.3c of this
license or (at your option) any later version. The latest version of this license is at:

http://www.latex-project.org/lppl.txt.
This work is author-maintained and consists of the files listed in the FILES section of the README file.

The makecookbook bundle includes an example cookbook with seven recipes. Those recipes are courtesy
of Rosalie D’Amico1. You are, of course, welcome to try them! They are included in the bundle to provide

1D’Amico, Rosalie A. Mama, How Do You Make.... (self-published, 2018).

4

real-world examples of using LATEX code to enter recipes. We only ask that you consider those recipes as for
you personal use and not (without attribution) for further food-related publication (further publication OK
in a LATEX context).

2.3 Contact Information / Feedback
No doubt, this documents contains typos, poorly explained (or unexplained) items, and other errors. It is
equally likely the makecookbook package includes coding errors. We value your feedback. Please report
problems or make other suggestions to Terry Murphy: latex@rd-tpm.com.

2.4 Version Information / Change History
Version 0.85 dated December 2, 2018. This is the initial version of the makecookbook bundle.

2.5 The LATEX Community / StackExchange
In this makecookbook package, much of the code (except for the mistakes!) is not original. When we ran into
difficulties, we usually turned to tex.stackexchange.com for help. We often found solutions in previous
questions and answers, but sometimes had to ask our own questions. The LATEX community is amazingly
generous with their time.

You may see in the text or in the comments to the code something like “See Q 59619”. That is a reference
to a specific question and answer on tex.stackexchange.com. You can often track it down by a Google
search of “latex 59619”; if that doesn’t work, try “tex.stackexchange.com 59619”.

3 Installing makecookbook

Go to the CTAN homepage of the makecookbook package: https://ctan.org/pkg/makecookbook. On that
page you can download the complete zip file using the download button next to “Download the contents of
this package in one zip archive”. After unzipping, you will have the following files and directories:

makecookbook/
| README
| makecookbook-doc.tex
| makecookbook-doc.pdf
|
|--- mycookbook/

| makecookbook.tex
| makecookbook.pdf
| cb-preamble.tex
| cb-lettrine.cfl
| cb-idxstyle.ist
|
|--- tex/
| cb-frontmatter.tex
| cb-chapterA.tex
| cb-chapterB.tex
|
|--- img/

cb-imageA.jpg
cb-imageB.jpg

Copy the mycookbook directory (including all its subdirectories and files) to you LATEX project area.
Choose a location so that the mycookbook directory is the root directory of your cookbook project.

Next, download and install2 the three required fonts. Get EB Garamond and Italianno from Google
2We are not experts on font installation. Because we load fonts by filename, our understanding is that you just need to follow

the normal instructions of your operating system for installing a system font. That’s all we did for our Windows 10 system.
If you run into problems, first verify that the installed font is available for other non-LATEX programs. Beyond that, check the
LuaTeX documentation, check the fontspec documentation, or ask a question at tex.stackexchage.com.

5

Fonts. Get Lato from http://www.latofonts.com/. We highly recommend that you download the three
fonts from those sources to ensure you have the same versions as we have used, with the same filenames.

Once the fonts are installed, you will be able to build the initial version of your cookbook by doing a
LuaTEX compile (or two) of makecookbook.tex.

If you decide to substitute you own fonts for any of the three fonts, you cannot compile until you modify
cb-preamble.tex to associate your selected fonts with your cookbook project. Instructions on how to make
the required modifications are given, beginning on page 16.

4 How This Document is Organized
Before we discuss the details of the makecookbook files and our LATEX code, we first (in Parts II and III)
look at the cookbook-writing project at a higher level:

Part II - Managing/Organizing Your Cookbook Files. Keeping a book size project well organized is
critical. We start by describing our approach to organizing the cookbook files.

Part III - Elements of a Book/Cookbook. Next, we provide an overview of the key elements that make
up a cookbook. This include elements common to most any book (title page, table of contents, chapters,
index, etc.), as well as elements particular to a cookbook (recipe names, ingredients, steps, etc.). All
of the elements listed here will be discussed in detail further below.

Then, we dig deeper into the elements that make a book/cookbook:

Part IV - Elements of a Book - the Details. We list and discuss the key elements that are common
to most books. We describe the choices we made regarding each element and, where appropriate, we
describe how you can make a different choice for that element.

Part V - Elements of a Book - the Details (Fonts). Due to the length of this discussion, and due to
the importance of font selection and usage, we break this topic out separately.

Part VI - Elements of a Cookbook - the Details. We list and discuss the elements that are particular
to cookbooks. For each element, we describe the LATEX commands and environments you will use to
include that element in your cookbook, including any options that have been programmed into those
commands and environments. Using the files provided and the information discussed here, you should
have the tools to make a complete cookbook.

Part VII - The PDF File. We discuss the sometimes conflicting requirements for building a PDF file for
a digital cookbook (with bookmarks and links) versus building a PDF file for submittal to a print-on-
demand company.

Part VIII - Examples. We present and discuss several recipe examples. This allows you to see real world
examples of the LATEX commands and environments needed to make your cookbook.

6

Part II

Managing/Organizing Your Cookbook Files
Writing a cookbook is a large project. Early on, you should think through how you will manage your
cookbook files. We describe below our fairly standard approach to organizing a book-size document in
LATEX:3

• Create a directory devoted exclusively to the cookbook. We will call that directory the root directory of
the cookbook (in the files distributed with the makecookbook package, we call that directory mycookbook).
All other directories used in the cookbook project will be referenced relative to the root directory. The
root directory holds: (1) a one-page makecookbook.tex file that includes the instructions needed to pull
all of the cookbook files together, (2) the cb-preamble.tex file that includes the LATEX packages and
programming code used by the cookbook, and (3) any special files needed by cb-preamble.tex (in our
case, the cb-lettrine.cfl and cb-idxstyle.ist files).

• Create two subdirectories under the root directory, one called tex and one called img. The tex directory
holds a .tex file for each chapter of the cookbook (plus cb-frontmatter.tex). The img directory holds
any image files used in the cookbook.

It is helpful to see the full contents of the makecookbook.tex file. This file brings in the preamble, the
front matter and the cookbook chapters and handles a few other “housekeeping” items:

\documentclass[11pt]{book}
\input{cb-preamble}

\begin{document}
\frontmatter
\include{./tex/cb-frontmatter}

\mainmatter
\include{./tex/cb-chapterA}

.

. (you include here all of the chapters of your cookbook)

.
\include{./tex/cb-chapterB}

\backmatter
\CookbookIndex{}

\end{document}

3See, e.g.: https://en.wikibooks.org/wiki/LaTeX/Modular_Documents

7

Part III

Elements of a Book/Cookbook
Here we present an overview of the elements that make up a book (in general), plus the special additional
elements that make up a cookbook.

An excellent source for the elements of a book is A Few Notes on Book Design by Peter Wilson4. Although
the entire article is well worth reading, see in particular Chapter Two - The Parts of a Book.

1 Elements of a Book
We list here some of the typical elements of a book. The first five are very basic elements:

Trim Size The physical size (height x width) of the paper used to print the book.

Margins In its simplest form, this is the top, bottom, inner and outer margins of the text area. Allowances
must also be made for the areas where any header or footer is printed.

Headers and Footers This is where (above or below the text area) things like page number and current
chapter name/number are printed.

Chapter Title Formatting The chapter name/number as printed on the first page of each new chapter.

Fonts Selection of fonts and choice of point size both play a fundamental role in all books.

Odds and Ends We will briefly consider a few other elements, such as color, drop caps and images.

Next we list the elements associated with the three traditional areas of a book: the front matter, the
main matter and the back matter:

Front Matter This is the first part of the book, and includes an assortment of preliminary information.
Typically, in this order, there is a title page, a copyright page, a dedication page, and a table of contents,
all of which may be followed by one or more short chapters such as a preface or acknowledgments.

Main Matter This is the heart of the book. We follow the typical case where the main matter consists
only of the chapters of the book.

Back Matter We follow the typical case where the back matter contains the book index. This is where
you might include other ancillary information such as a bibliography, an appendix, notes, etc.

2 Elements of a Cookbook
Chapter Intro In a cookbook, chapters tend to be organized into logical units such as cookies, desserts,

pasta, appetizers, etc. Following the chapter name, there will usually be some introductory text for
that chapter. We call that the chapter intro.

Recipe Name and Yield A new recipe is introduced with a recipe name and, often, with information
regarding the “yield” of the recipe (e.g., “makes 36 cookies” or “serves 4 to 6”, etc.).

Recipe Intro/Story Often there is a story or other information specific to a recipe.

Ingredients and Steps Following the recipe name/yield and (possibly) a recipe story, there is a list of the
ingredients, plus the steps required to make the recipe.

Attribution If the source of the recipe is known, it is proper to acknowledge that source.

Additional Comments/Advice There may be some recipe side notes and/or advice that is not properly
included within the recipe, but is noted afterwards.

4https://ctan.org/pkg/memdesign

8

Part IV

Elements of a Book – the Details
1 Terminology
We define here some of the terms used below. Our book is two-sided, so visualize an open book with both
the left and right page visible.

The terms recto and verso (from the Latin) refer to the text written or printed on the right (front) side
and on the left (reverse or back) side of a leaf of paper. By book publishing convention, the first page of a
book, and the start of each chapter of a book, is on a recto page. That means all recto pages will have odd
page numbers and all verso pages will have even page numbers.

Still visualizing our open book, the outer margin is the right margin on a right/recto page and the left
margin on a left/verso page – the margin away from the book binding. Similarly, the inner margin is the
left margin on a recto page and the right margin on a verso page – the margin closest to the book binding.

2 Trim Size and Margins
In deciding on the trim size of the cookbook, we started with two requirements: (1) for the main text,
we wanted an easily readable font size of at least 11 points, and (2) with very few exceptions, we wanted
all recipes to fit on one page. With trial and error on margins and possible use of multiple columns, plus
research on best practices in typography, and testing of various fonts, we ended up with the trim size and
margins described below. Then we used the geometry package to set those parameters.

We chose an industry standard trim size of 8 x 10 inches. That trim size allows for printing by most
print-on-demand printing companies.

It is tempting to set small margins to allow for more text on the page. Typographers have given much
thought to these matters and it just isn’t that simple. A useful discussion is found in Chapter 2 of the
KOMA-script documentation5. As a result, we increased our margins well beyond our initial instincts. Even
so, there is still not as much margin space as some experts might like.

We set the outer margins to 1.0 inch. When the book is open, you see both sides of the inner margin
together; it is therefore recommended that you set the inner margins to one-half the outer margin (here, 0.5
inch). Visually, it is as if you had three margins: a 1-inch verso outer margin, a 1-inch combined recto/verso
inner margin, and a 1-inch recto outer margin. You should also add a binding offset to compensate for
the part of the inner margin that disappears into the binding – we have set the binding offset (for each side
of the inner margin) to 0.375 inches.

Because we are using footers but not headers, we have set the top margin to 0.75 inches and the bottom
margin to 1.0 inch. That leaves the text area at 6.125 x 8.25 inches, about 63% of the full page size.

We have set the distance between the bottom of the text area and the baseline of the footer to 40 points,
which seems to give a nice separation between the text area and the footer.

The above is obtained with the following geometry package settings:

\usepackage{geometry}

\ifCookbookDraft
\geometry{paper=letterpaper, % the physical paper size during draft mode

layoutsize={8in,10in}, % always use intended final paper size for layout
layouthoffset=0.25in, % center the "layout" horizontally
layoutvoffset=0.5in, % center the "layout" vertically
%showframe, % use when needed
showcrop}

\else
\geometry{papersize={8in,10in}} % the physical paper size in final production mode
\fi

5https://ctan.org/pkg/koma-script

9

\geometry{nomarginpar, % do not reserve space for margin notes
bindingoffset=0.375in,
inner=0.5in,
outer=1in,
top=0.75in,
bottom=1in,
footskip=40pt} % default seems to be 27pt

When you submit your cookbook to a print-on-demand printer, the PDF file’s metadata must show
the paper size equal to the intended trim size. In the geometry package, this is done by making sure that
papersize equals layoutsize. However, during the time you are working on your cookbook (in draft mode),
you want to set the geometry package papersize equal to the physical size of the paper coming out of your
local printer. In our case, we are printing draft pages in letterpaper size (8.5 x 11 inches). You manage this
draft vs. final difference, by setting the \newif value of \ifCookbookDraft to \CookbookDrafttrue (draft)
or \CookbookDraftfalse (final). You will find these settings near the very top of cb-preamble.tex.

Just modify the above geometry settings for your needed trim size, draft paper size, margins, etc.

3 Headers and Footers
LATEX sets headers and footers with the pagestyle command. Several pagestyles are predefined by LATEX,
but you are also allowed to define your own. We are using the book document class, which by default uses:
(1) the predefined empty pagestyle (no header or footer on the page), (2) the predefined plain pagestyle
(no header, the footer contains only a centered page number), and (3) a modified version of the predefined
headings pagestyle.

In the cookbook, we use the empty pagestyle, a modified version of the plain pagestyle, plus a main
pagestyle that we define. We use the fancyhdr package to redefine the plain pagestyle and to define our
own main pagestyle, as follows:

\usepackage{emptypage, fancyhdr} % for emptypage, see Q360739
% NOTE: RO = right/odd; LE = left/even; CE = center/even; CO = center/odd

\fancypagestyle{plain}{%
\fancyhf{} % clear the header and footer
\renewcommand{\headrulewidth}{0pt} % use 0 to disable header ruler line
\renewcommand{\footrulewidth}{0.2pt}
\fancyfoot[RO, LE] {Page \thepage}}

\makeatletter % \makeatletter must be OUTSIDE the command - see Q 444532
\fancypagestyle{main}{ % identical to plain, except in mainmatter, where

% it includes \leftmark in the center of the footer
\fancyhf{}
\renewcommand{\headrulewidth}{0pt}
\renewcommand{\footrulewidth}{0.2pt}
\fancyfoot[RO, LE] {Page \thepage}
\fancyfoot[CE,CO]{\if@mainmatter \leftmark\fi}} % See Q340125

\makeatother

The above code does as follows:

• By loading the emptypage package, we force all completely empty pages to use the empty pagestyle.
• The redefined plain pagestyle: (1) has no header and no header-area rule line, (2) has a footer-area rule

line that is 0.2 points thick, and (3) prints the page number at the outer margin – the right side of the
footer on recto (odd numbered) pages and the left side of the footer on verso (even numbered) pages.

• The main pagestyle is identical to the redefined plain pagestyle, except, in the mainmatter area only,
it prints the \leftmark in the center of the footer on both even and odd numbered pages. In the book
class, the \leftmark is in all-caps and looks like “CHAPTER 2. COOKIES”.

With our pagestyles defined, we now describe how they are used. We follow a very typical approach to
headers and footers in printed books:

10

• Empty Page: if a page is otherwise completely empty, we use the empty pagestyle. This rule applies
through the frontmatter, mainmatter and backmatter, and supersedes all other rules. An empty page
happens, for example, when a chapter ends on a recto page. Since all new chapters start on a recto page,
the intervening verso page is completely empty.

• Frontmatter: We employ the empty pagestyle from the beginning (title page) up to and including the page
just before the \tableofcontents page. Then, from that page through the end of the frontmatter, we
employ the (redefined) plain pagestyle. We follow the default rule for the book class, where frontmatter
page numbers are indicated by small roman numerals. Note that there is “pagination” (page counting)
from the first page, but only printing of the page number after switching to the plain pagestyle.

• Mainmatter: We employ the main pagestyle, except on the first page of each \chapter, which switches
to the redefined plain pagestyle (this switch is the default book class \chapter behavior, so requires no
coding by us). Page numbers are arabic, with page 1 being the first page of the first mainmatter chapter.

• Backmatter: We employ the plain pagestyle. Page numbers are arabic, and continue with the pagination
from the mainmatter.

Our code only needs to issue two \pagestyle commands: (1) we include \pagestyle{empty} as the
first line of cb-frontmatter.tex, and (2) we include \pagestyle{main} just after the \tableofcontents
command in cb-frontmatter.tex. (Recall that the main pagestyle is identical to the plain pagestyle in
the frontmatter and backmatter). To implement our rule for empty pages, we load the emptypage package,
which automatically applies the empty pagestyle to all empty pages.

The fancyhdr documentation is a good source of additional information on these matters.

4 Chapter Title Formatting
We use the titlesec package for the formatting of chapter titles. Following are some key concepts of the
titlesec package:

• The label means the basic chapter information, such as “Chapter 6”.
• To obtain the current label, you use the \chaptertitlename command (to obtain “Chapter”) and the

\thechapter command (to obtain the current chapter number). Importantly, per the book class default,
both of those commands are blank in the frontmatter and backmatter, so we only obtain a non-empty
label in the mainmatter.

• The title body means the text identifying the current chapter, such as “Sauces and Chutneys”.
• the title means the entire chapter title (label plus title body).
• Two commands are provided to change the title format. The \titleformat command is used for the

“internal” format (i.e., shape, font, label, etc.) and the \titlespacing command defines the “external”
format (i.e., spacing before and after, etc.).

Following is our code:
\usepackage{titlesec}

\titleformat{\chapter}[display] % [display] puts the label in a separate paragraph
{\filleft\FontChapterLabel} % The format for the whole title (label and title body text)
{\chaptertitlename\ \thechapter} % This defines the text for the label
{1pt} % The horizontal separation between label and title body:

% Next is optional code preceding the title body. We change
% the title body font from the initial setting above.
% we include \raggedleft because text may exceed one line.

{\titlerule\vspace{1ex}\raggedleft\FontChapterTitle}

\titlespacing*{\chapter} % The starred version kills the indentation of the
% paragraph following the title.

{0pt} % amount to increase left margin
{20pt} % vertical space before title
{20pt} % verticle space between title and text

The titlesec documentation is a good source of additional information on these matters.

11

5 Odds and Ends

5.1 Color
An important decision in a cookbook is whether to print in black and white or color. The printing costs can
be substantially different. One option is to first print a small number of books in black and white, live with
the book for a while, edit as necessary, and then move to color printing when you are fully satisfied with the
final product.

Our approach is to define all colors used in the cookbook in one place in the preamble. We use the xcolor
package and the \definecolor command to create our defined names for all of our colors. That allows us
(in one place) to change those color definitions to accommodate either a black and white or color cookbook.

You should check with your print on demand printer to determine whether they prefer (or require) either
the CMYK or RGB color model. In our code, below, we provide examples of both color models:

\usepackage{xcolor}
\definecolor{clrWhite}{cmyk}{0.00, 0.00, 0.00, 0.00} % true white
\definecolor{clrBackTip}{rgb}{1.0, 0.95, 0.95} % red!5!white
\definecolor{clrFrameTip}{rgb}{0.75, 0.0, 0.0} % red!75!black
\definecolor{clrBackCheffy}{rgb}{1.0, 1.0, 1.0} % white
\definecolor{clrFrameCheffy}{rgb}{0.0, 0.0, 0.75} % blue!75!black
\definecolor{clrBackNotes}{rgb}{1.0, 1.0, 1.0} % white
\definecolor{clrFrameNotes}{rgb}{0.0, 0.75, 0.0} % green!75!black
\definecolor{clrLettrineBig}{gray}{0.5}
\definecolor{clrLettrineSmall}{gray}{0.5}
\definecolor{clrIngTitle}{cmyk}{0.00, 1.00, 1.00, 0.00} % true red
\definecolor{clrEditNote}{cmyk}{0.00, 1.00, 1.00, 0.00} % true red
\definecolor{clrHyperRef}{cmyk}{0.00, 1.00, 1.00, 0.00} % true red

See the xcolor package for helpful information on the CMYK and RGB color models.

5.2 Drop Cap
A drop cap letter is a single letter (usually at the beginning of a chapter or important paragraph) that is
larger than the following text. The practice began more than 2,000 years ago. Originally, the drop cap was
very ornate and several lines high. As typesetting took hold in the mid 15th century, the typesetter would
leave the necessary blank space to allow for a hand-drawn drop cap. The drop cap served two purposes: (1)
it was a decorative element and (2) it assisted the reader by dividing the text into different parts. By the
latter part of the 19th century, drop caps had mostly lost their ornamental flourish and usually consisted
only of a larger letter (maybe sized to two or three lines) signifying the start of a chapter or section.

There was a substantial reduction in the use of drop caps at the beginning of the 20th century. More
recently, there has been a bit of a revival. Our review of modern cookbooks found that it now quite common,
but hardly universal. We have elected to use drop caps in the chapter intro and in the recipe story, but our
code does not require it. We use the lettrine package to implement our drop caps (“lettrine” is the French
word for drop caps). As is customary, the lettrine package (optionally) uses a different font style for the
first several characters following the drop cap (by default they are set to small caps). We call these special
characters the drop caps text. Our code:

\usepackage{lettrine}
\renewcommand{\LettrineFontHook}{\MyScriptFont\color{clrLettrineBig}}
\renewcommand{\LettrineTextFont}{\color{clrLettrineSmall}\FontLettrineText}
\renewcommand{\DefaultOptionsFile}{cb-lettrine.cfl}

We use the \LettrineFontHook command to set the font (and color) of the drop cap letter to our
script font. We use the \LettrineTextFont command to set the font (and color) of our drop caps text to
a small-caps version of the current roman font. Finally, we use the \DefaultOptionsFile command to
point to a lettrine package configuration file (here cb-lettrine.cfl) where we fine-tuned the height (in
rows) and width of each alphabetic letter that may be used as a drop cap letter. See the lettrine package
documentation for more details.

12

5.3 Images/Photos
There is very little material here on using images in your cookbook. We use the well-documented graphicx
package and its\includegraphics command as the starting point for displaying photos. Our advice is to
use non-LATEX programs to put your images in final form (any rotation or cropping needed, as well as any
needed adjustments to size or dpi).

By way of example, we include the code for our \SideBySide command, used for displaying two images
side-by-side. Some comments on the setup:

• Recall that all of our *.tex files (and therefore our “current directory”) will either be in: (1) the root
directory of the cookbook project, or (2) the tex subdirectory under that root directory. Also, all of
our image files will be in the img subdirectory under that root directory. We use the \graphicspath
command to tell LATEX to look for the image files either: (1) in the img subdirectory under the current
directory, or (2) in the img directory that is a sibling of the current directory.

• We use the caption package to manage any caption we put under an image. With skip=2pt, the vertical
distance between the image and caption is set to 2 points. With labelformat=empty, we have an empty
caption label. With font={rm,it}, the caption font is \rmfamily and italic. The caption package
options can be selected in the \usepackage command, or separately in the \captionsetup command.
To demonstrate the latter, we select the justification=centering option in \captionsetup.

• The \SideBySide command has two mandatory arguments. For the two side-by-side images, Arg #2 is
the left image and Arg #3 is the right image.

• Arg #1 is an optional key-value argument with three possible entries. VertAlign= defaults to c (ver-
tically align images at their centers) and can also be set to t (align at their tops) or b (align at their
bottoms). LeftCaption= and RightCaption= default to \empty and can be use to include a caption
under one or both of the images.

\graphicspath{{img/}{../img/}} % look in img directory (subdir of book root or sibling of tex)
\usepackage[skip=2pt, labelformat=empty, font={rm,it}]{caption} %
\captionsetup{justification=centering} % this is needed to have multi-line captions centered

\pgfkeys{
/SideBySide/.is family, /SideBySide,
default/.style = {VertAlign = c, LeftCaption = \empty, RightCaption = \empty},
VertAlign/.estore in = \VerticalAlign,
LeftCaption/.estore in = \LeftText,
RightCaption/.estore in = \RightText,

}

\NewDocumentCommand \SideBySide{O{\empty} m m} % Q 5769
{
\pgfkeys{/SideBySide, default, #1}%
%
\begin{figure}[htb]

\centering
\begin{minipage}[\VerticalAlign]{0.49\textwidth} % align at t= top, c = center, b = bottom

\centering
\includegraphics[width=0.97\textwidth]{#2} %
\ifx\LeftText\empty\relax\else\caption{\LeftText}\fi

\end{minipage}\hfill%
\begin{minipage}[\VerticalAlign]{0.49\textwidth}

\centering
\includegraphics[width=0.97\textwidth]{#3} %
\ifx\RightText\empty\relax\else\caption{\RightText}\fi

\end{minipage}
\end{figure}

}

13

6 Front Matter, Main Matter and Back Matter

6.1 Introduction
Almost all books have a structure consisting of three sections: the front matter, the main matter and the
back matter. We describe here the organization and contents of those three sections. Although there are
many options regarding the organization and contents of those three sections, we limit our discussion to the
actual (and very typical) structure we have selected.

6.2 Front Matter
The front matter (sometimes called “preliminaries”) is the first section of a book. Because the front matter
is normally the last section of a book to be completed, small roman numerals are traditionally used for the
front matter page numbers. That way, last-minute changes will not require renumbering the main text.

For our cookbook, the front matter is contained in the file cb-frontmatter.tex. We now describe, in
order of appearance, the parts that make up the front matter.

6.2.1 Title Page
It is actually typical for old-line publishers to start with a half-title page (just the book name and no

other information) and then the full title page (including author’s name and possibly other information).
We include only a full title page.

6.2.2 Copyright Page
Here we provide the copyright information. As is common, we also includes information on the publisher,

the book edition and edition history, the ISBN number (if any), and the Library of Congress number (if a
USA book). We also include here information about the production, design and fonts (the “colophon”). You
will need to make several edits to this page – see the “front matter helper commands” section of the preamble.

6.2.3 Dedication
The dedication, if any, follows the copyright page and is the only element on that page.
6.2.4 Table of Contents
We provide the page number for each chapter in the book, and for the index. If your book has an

appendix (or similar), you should also include that in the table of contents.
With the book class, no package is required to include chapters, sections and subsections in the table

of contents. Because our cookbook has no sections or subsections, we list only chapters (plus the index) in
our table of contents. We insert the table of contents at the desired location in the front matter simply by
issuing the \tableofcontents command. Section 6.4 (page 14) shows how we add the index to our table of
contents.

6.2.5 Other
Following the table of contents, there may be some or all of the following (each as a separate chapter and

each included in the table of contents): foreword, preface, acknowledgments, introduction, or similar.

6.3 Main Matter
The main matter (sometimes called the “body matter”) follows the front matter. This is the actual text
of your book. We follow the typical case where the main matter consists only of the chapters of the book.
The first page of the main matter is page 1 of the book (Arabic numbering).

6.4 Back Matter
The back matter (sometimes called the “end matter”) follows the main matter. Ours is a typical case,
where the back matter contains only the book index. The back matter is where you might include other
ancillary information such as an appendix, notes, a glossary, a bibliography, etc. Our index consists only
of the recipes in the cookbook. See page 22 and the \RecipeNameAndYield command for how we put our
recipes in the index.

14

Following is the code to include the index in the back matter. First, from cb-preamble.tex we have:

\usepackage{imakeidx} % supports creation of an index (here, a recipe index)
\makeindex[intoc] % make the *.idx file; intoc = include this Index in TOC (Q 59619)

\NewDocumentCommand \CookbookIndex{}{
\cleardoublepage % flush all material and clear until you start new odd numbered (recto) page
\phantomsection\addcontentsline{toc}{chapter}{\indexname} % see also Q 59619
\printindex

}

And from makecookbook.tex we have:

\backmatter
\CookbookIndex{}

With the above code, you get the standard index format for the book document class (plus inclusion in
the table of contents). We have also added code that modifies the format of the index in three ways: (1)
it slightly changes the hanging indent of long index items, (2) it right justifies the page number associated
with the index item, and (3) it “dot fills” between the index item and the page number. Our code:

\makeatletter
\def\@idxitem{\par\hangindent 10pt} % not needed unless you want to fine tune hanging indent
\newcommand{\betterdotfill} % see Q 396898

{\leavevmode \nobreak\cleaders \hb@xt@ .44em{\hss .\hss }\hskip .5em plus 1fill \kern \z@}
\makeatother
\makeindex[options=-s cb-idxstyle] % use cb-idxstyle.ist for style; Q 132465 & Q 396898

You might want to temporarily comment out this additional code, just to compare the results to the
standard book class index format.

The above code: (1) slightly changes the hanging indent for index items that are longer than a single
line (this code is definitely not necessary), (2) defines the \betterdotfill command (more on this below),
and (3) uses the \makeindex command to load an “index style file” named cb-idxstyle.ist to modify the
format of the index6. The cb-idxstyle.ist file is a text file with the following contents:

delim_0 "\\betterdotfill "
delim_1 "\\betterdotfill "
delim_2 "\\betterdotfill "

What is with that strange \betterdotfill command (courtesy of Enrico Gregorio in Q 396898)? If you
still have the default setup of the makecookbook package (including fonts, margins, etc.), we can demonstrate
why it is needed. In the above cb-idxstyle.ist file, change the three betterdotfill entries to standard
dotfill entries:

delim_0 "\\dotfill "
delim_1 "\\dotfill "
delim_2 "\\dotfill "

Now compile and look at the index entry for the recipe named “G – Potato Salad with Sherry Shallot
Vinaigrette”. That recipe is exactly the wrong size, causing \dotfill to fail. The page number is not
right justified and there is no dot fill. Enrico’s magic code7 solves the problem by forcing the last part of
“wrong-sized” recipe names to spill over to the next line.

6See https://ctan.org/tex-archive/indexing/makeindex/paper/ind.pdf for documentation on the index style file.
7Don’t ask us to fully explain Enrico’s code, although there are strong hints in The TeXbook by Donald E. Knuth.

15

Part V

Elements of a Book – the Details (Fonts)
1 Introduction
The METAFONT font selection scheme in original TEX was developed beginning in the late 1970’s. Although
advanced for its time, it is quite limiting by today’s standards. In LATEX, a ’New Font Selection Scheme’
(NFSS) was released in 1989 and then updated in 1993. While certainly a great improvement, allowing
package writers to make many new fonts available, it is still a cumbersome and limiting system.

Backward compatibility has been a limiting factor in LATEX development, due to: (1) the expectation that
older documents will still compile and produce identical output and (2) the large ecosystem of third-party
packages. Until recently, one of the most important advances was the pdfTeX compiler, which produced
PDF output directly from a TEX or LATEX compile. However, pdfTeX is still an 8-bit system with the same
font limitations. While there are packages and methods for incorporating Unicode in a pdfTeX compile, it
is both kludgy and incomplete.

Recently, the XeTeX and LuaTeX compilers have been released. They are Unicode-based 32-bit systems.
Both can load any OpenType (including TrueType) font installed on your computer – all you need is the
fontspec package. That allows easy use of the advanced typographic features of OpenType. It must be
noted that these two new compilers have some subtle incompatibilities with TEX and LATEX . However, those
incompatibilities are minimal and will impact a small group of uses – primarily those with old legacy code.
Of course, pdfTeX is still available for any such legacy code.

To allow for more modern font handling, we therefore decided to use the LuaTeX compiler. As between
LuaTeX and XeTeX, we decided that LuaTeX is a better choice due to its more complete support of the
microtype package and for the option (which we have not used) of Lua scripting.

1.1 Fonts
We discussed on page 4 the three fonts you must install if you want a successful compile “out of the box”.
Here we discuss the attributes required of substitute fonts. We begin by again listing the three font, along
with the weights and shapes required of substitute fonts:

Serif EB Garamond (version from Google Fonts). Any substitute font should have regular and bold weights,
both to include the italics shape. Also, the regular weight should include the small caps shape.

Sans Serif Lato (version from www.latofonts.com). Any substitute font should have regular, semi-bold
and bold weights, all to include the italics shape.

Script Italianno (version from Google Fonts). We only need the regular font weight and shape.

In addition to the above, the substitute fonts must be OpenType (including TrueType) and should
support the Ligatures=TeX font feature described in the fontspec package manual. Finally, the serif and
sans serif fonts should support the following (there are workarounds if they do not):

• These glyphs: degree (char 176), copyright (char 169), center dot (char 183), and bullet (char 8226).
• The Fractions=On OpenType font feature, as described in the fontspec package manual.

On page 18 and following, below, we discuss the simple changes to cb-preamble.tex you must make to
substitute your own favorite fonts.

2 Line Length and Font Size
Part of the font selection process is choosing a proper point size for the intended use. And these decisions
directly impact other issues, such as the choice of trim size and margins. We consider here the important
relationship between point size and line length.

16

Lines of text can be less comfortable to read if they are either too long or too short. Following are a
couple of (sometimes contradictory) rules of thumb for the body text of a printed book8:

• Line length should be between 45 and 75 characters per line. For printed works with multiple columns,
40 to 50 characters per line is preferred.

• Line length should be about 30 times the point size of the font, with an acceptable range between 20 and
40 times. We call that number the point multiple, and calculate it by dividing the length (in points) of the
line by the point size of the font. We assume that 1 inch equals 72.27 points (often rounded to 72 points
in desktop publishing applications). Our 6.125-inch text margin is therefore about 443 points wide.

Now let’s relate the above rules of thumb to our four different layouts of body text.

• The introductory text at the beginning of each chapter has a font size of 14 points. Dividing 443 by
14, we have a nearly ideal point multiple of about 31.6. We roughly calculate the characters per line at
between 78 and 80 – a little high, but we find the text easily readable and note the point multiple is right
where it needs to be.

• The introductory text at the beginning of each recipe has a font size of 13 points. Also, the text is
indented on each side by 20 points, giving a text width of 403 points. Dividing 403 by 13, we have a
nearly ideal point multiple of about 31. We roughly calculate the characters per line at about 78 – again,
a little high, but we find the text easily readable and note the point multiple is right where it needs to be.

• The recipe ingredients and steps are presented in a two-column format, with a font size of 10.95 points.
Listing of ingredients should not be considered “body text”, so we focus on the recipe steps. With a 10
point separation between the two columns, each column is about 217 points wide. Dividing 217 by 10.95,
we have a point multiple of just about 20 – at the low end, as might be expected for multi-column text.
We roughly calculate the characters per line at 48, right where it should be for multi-column text.

• The copyright page uses a font size of 9 points. This is a “fine print” page and should not be considered
as body text. It is of no concern that the characters per line and point multiple are not within prescribed
parameters.

3 Our Selected Fonts
Below we provide additional detail on the fonts and font sizes we selected.

3.1 Serif Font
For the makecookbook package, we selected the EB Garamond font. Garamond (produced in many versions)
is an old-style serif typeface, named for sixteenth-century Parisian engraver Claude Garamond. It and related
typefaces are very popular for printing body text in books. It is a classic design that does not shout “look
at me” but just unobtrusively makes for very easy to read text.

EB Garamond is the primary font used in the cookbook. It is used everywhere in the cookbook that is
not specifically mentioned below for the other fonts. Some of the key places where this font is used:

• When listing the steps to make a recipe. This is in a two-column environment, using a 10.95 point font.
• At the beginning of recipes, when telling a story about the recipe or describing other special information

regarding the recipe. This is in a one-column environment, indented 20 points on both the left and right
sides. We use a 13 point font.

• At the beginning of each chapter, when discussing the recipes in that chapter. This is in a one-column
full-width environment, using a 14 point font.

• On the copyright page, where it is typical to have a smaller font. We use a 9 point font.
• In the chapter title, this font is used as the chapter label (e.g., “Chapter 7”), using a 14.4 point font.

8See, e.g.: https://en.wikipedia.org/wiki/Line_length and the references cited there.

17

3.2 Sans Serif Font
For the makecookbook package, we selected the Lato font. Lato is described as “clean and modern” as well
as “transparent” (unobtrusive), meeting our goal for easy to read but low-key body text fonts. This is the
only other font used for body text. It is used in two places:

• When listing recipe ingredients. This is in a two-column environment, using a 10.95 point font. We use
the semi-bold face to provide a better visual contrast between recipe ingredients and recipe steps.

• When a recipe has multiple sections of ingredients/steps, we use this font for the title of a recipe section.
It is still 10.95 points, but in italics with a bold face.

3.3 Script
For the makecookbook package, we selected the Italianno font. We believe it provides an interesting contrast
to our two body text fonts, while still remaining readable. It is used in three places:

• In the chapter title, it is used for the name of the chapter. We use a 40 point font size.
• In recipes, it is used for the recipe name. We use a 24 point font size.
• As the large drop cap letter. (Font size determined by the \lettrine package).

Side Note
We have a confession to make. For our cookbook, we do not use the EB Garamond or Lato font. (We
do use Italianno). In their place, we use the Adobe Garamond Pro and Adobe Myriad Pro commercial
fonts. Although both implementation of Garamond are excellent, for our main font we wanted a
well-tested and reliable font (EB Garamond is still in development). For our secondary font, we
just very much like the look and readability of the Myriad typeface. Of course, we could not use a
commercial font in this package.

4 Code to Implement our Font Usage

4.1 Load Our Fonts
The first step is to load our three fonts using the fontspec package:

• Our serif font is loaded using the \setmainfont command. After that, our code refers to this family as
the \rmfamily.

• Our sans serif font is loaded using the \setsansfont command. After that, our code refers to this family
as the \sffamily.

• Our script font is loaded using the \newfontfamily command. The \newfontfamily command allows
us to name the family (similar to \rmfamily). We name our script font \MyScriptFont.

All three font loading commands include a mandatory argument to identify the font, plus various optional
key-value augments. The fontspec package provides several options for identifying the font. We use their
“by file name” option. The easiest way to understand this is to look at the six font files that make up EB
Garamond’s regular, regular italic, bold, bold italic, semi-bold and semi-bold italic font faces:

• ebgaramond-regular.ttf
• ebgaramond-italic.ttf
• ebgaramond-bold.ttf
• ebgaramond-bolditalic.ttf
• ebgaramond-semibold.ttf
• ebgaramond-semibolditalic.ttf

18

The leading part of the font name (ebgaramond) is entered as the mandatory argument. The .ttf file
extension is entered in the optional key-value argument: Extension=.ttf. The six font faces are identified
by their filename, with a * representing the leading part of their filename. The complete code to load the
fonts (see the fontspec package for more details):

\usepackage{fontspec}
\usepackage{microtype}

\setmainfont{ebgaramond}[
Extension=.ttf,
UprightFont=*-regular,
ItalicFont=*-italic,
BoldFont=*-bold,
BoldItalicFont=*-bolditalic,
FontFace={sb}{n}{*-semibold},
FontFace={sb}{it}{*-semibolditalic},
Ligatures=TeX,
Numbers=Lining]

\setsansfont{lato}[
Extension=.ttf,
UprightFont=*-regular,
ItalicFont=*-italic,
BoldFont=*-bold,
BoldItalicFont=*-bolditalic,
FontFace={sb}{n}{*-semibold},
FontFace={sb}{it}{*-semibolditalic},
FontFace={k}{n}{*-black},
FontFace={k}{it}{*-blackitalic},
Ligatures=TeX,
Numbers=Lining]

\newfontfamily\MyScriptFont{Italianno}[
Extension=.otf,
UprightFont=*-Regular-OTF,
Ligatures=TeX]

As mentioned above, in our cookbook, we use the Adobe Garamond Pro and Adobe Myriad Pro fonts.
To replace EB Garamond and Lato with those fonts, it is as simple as changing the \setmainfont and
\setsansfont commands with (you can do the same to substitute your favorite fonts):

\setmainfont{agaramondpro}[
Extension=.otf,
UprightFont=*-regular,
ItalicFont=*-italic,
BoldFont=*-bold,
BoldItalicFont=*-bolditalic,
FontFace={sb}{n}{*-semibold},
FontFace={sb}{it}{*-semibolditalic},
Ligatures=TeX,
Numbers=Lining]

\setsansfont{myriadpro}[
Extension=.otf,
UprightFont=*-regular,
ItalicFont=*-it,
BoldFont=*-bold,
BoldItalicFont=*-boldit,
FontFace={sb}{n}{*-semibold},
FontFace={sb}{it}{*-semiboldit},
FontFace={k}{n}{*-black},

19

FontFace={k}{it}{*-blackit},
Ligatures=TeX,
Numbers=Lining]

4.2 Handle Special Font Faces
We handle the two special font faces, semi-bold and black, giving them commands that are similar to the
built-in commands used, for example, by bold (i.e., similar to the \textbf and \bfseries comands):

\NewDocumentCommand \sbseries {}{\fontseries{sb}\selectfont}
\DeclareTextFontCommand{\textsb}{\sbseries}
\NewDocumentCommand \kseries {}{\fontseries{k}\selectfont}
\DeclareTextFontCommand{\textk}{\kseries}

4.3 Commands to Select Our Fonts
Next, we provide the commands needed to select the fonts. This gives us a level of indirection between the
actual font used and the more abstract name we use for that font. In referencing/selecting a font, we will
only use the below command names:

\NewDocumentCommand \FontSteps {}{\rmfamily\mdseries}
\NewDocumentCommand \FontStepsDefault {}{\rmfamily\mdseries}
\NewDocumentCommand \FontIngredients {}{\sffamily\sbseries}
\NewDocumentCommand \FontIngDefault {}{\sffamily\sbseries}
\NewDocumentCommand \FontIngTitle {}{\sffamily\bfseries\itshape}
\NewDocumentCommand \FontChapterIntro {}{\rmfamily\fontsize{14}{16.8}\selectfont}
\NewDocumentCommand \FontRecipeStory {}{\rmfamily\fontsize{13}{15.6}\selectfont}
\NewDocumentCommand \FontCopyrightPage {}{\rmfamily\fontsize{9}{11}\selectfont}
\NewDocumentCommand \FontChapterLabel {}{\rmfamily\fontsize{14.4}{18}\selectfont}
\NewDocumentCommand \FontChapterTitle {}{\MyScriptFont\fontsize{40}{48}\selectfont}
\NewDocumentCommand \FontRecipeName {}{\MyScriptFont\fontsize{24}{29}\selectfont}
\NewDocumentCommand \FontLettrineText {}{\rmfamily\scshape\sbseries}
\NewDocumentCommand \FontTitleColorBox {}{\rmfamily\Large\bfseries}
\NewDocumentCommand \FontTitlepageTitle {}{\MyScriptFont\fontsize{40}{48}\selectfont}
\NewDocumentCommand \FontTitlepageAuthor{}{\rmfamily\sbseries\scshape\fontsize{14.4}{18}\selectfont}

4.4 Special Handling of Fractions
For a cookbook, it is important to have a consistent way to display “nice” (and readable) fractions. For
cookbooks, fractions are almost always of the “split level” type. Based on a suggestion in Q416164, we began
by using the xfrac package and the \sfrac command, as follows:

\usepackage{xfrac}
\def\fr#1/#2 {\sfrac{#1}{#2} }
\def\frx#1/#2 {\sfrac{#1}{#2}}

The first \def allows you to type \fr1/2 to get nicely formatted 1⁄2 followed by a space. The second \def
allows you to type \frx1/2 to get nicely formatted 1⁄2 where the space following your entry is “gobbled” by
the \def because there is a space between \def and {. This second form is needed in the less common case
when you want a parenthesis, comma, period or other character to immediately follow the fraction (i.e., no
space between). Thus, to have a period immediately follow a nice 1⁄2 fraction, you would enter \frx1/2 .
(Note the space between the 2 and the period).

Later we noted the discussion in Q234857 and the possibility of using the OpenType Fractions=On
option. Our serif and sans serif fonts include full support for Fractions=On. So we replaced the \sfrac
command with the \addfontfeatures command (below). Although \sfrac does a good job of produc-
ing “nice” fractions, the fractions look even nicer when you use an OpenType font that fully supports
Fractions=On. The new \def still uses the same “space trick” as the old \def. NOTE: some OpenType
fonts “support” Fractions=On only partially – if there is an internal “pre-made” fraction they will use that,
but things don’t otherwise look so nice (or consistent). Check you font.

Our final code (you can revert to \sfrac if you desired font does not support this feature):

20

\def\fr#1/#2 {{\addfontfeatures{Fractions=On}#1/#2} }
\def\frx#1/#2 {{\addfontfeatures{Fractions=On}#1/#2}}

4.5 Commands for Certain Glyphs
The degree, copyright, bullet and center (or mid) dot glyphs all have standard unicode character codes, and
all are available in our serif and sans serif fonts. We therefore provide our own commands for these glyphs,
rather than using the associated LATEX commands. Our goal is to avoid the possible loading by LATEX of
other unnecessary fonts to create those glyphs. A font uses only for a few glyphs can cause some confusion,
and even failed print jobs, at some of the print on demand companies.

Similarly, to avoid use of the math command \cdot (and possible loading of a math font), we “rolled
our own” using our \CtrDot glyph and appropriate kerning to build the \CtrDots (plural) command.

If you use a font that does not provide these glyphs, use the LATEX macros \textdegree or \copyright
or \textbullet or (math) \cdot.

We also include here the code to use two “glyph-like” images: \ChefHat and \Oven. We made those two
images using the tikz package and then saved them each in a TEX box. They are used in selected places,
in the same fashion as normal font glyphs.

\NewDocumentCommand \TextDegree {}{{\char176}} % or ^^^^00B0
\NewDocumentCommand \Copyright {}{{\char169}} % or ^^^^00A9
\NewDocumentCommand \TextBullet {}{{\char8226}} % or ^^^^2022
\NewDocumentCommand \CtrDot {}{{\char183}} % or ^^^^00B7
\NewDocumentCommand \CtrDots {}{{\CtrDot\kern 0.2em\CtrDot\kern 0.2em\CtrDot\kern 0.2em}}

\newsavebox{\HatBox}
\AtBeginDocument{\savebox{\HatBox}[\hatwidth]{\MakeChefHat}}%
\NewDocumentCommand \ChefHat {}{\usebox{\HatBox}}%
\NewDocumentCommand \ChefNote {}{{\raisebox{.4ex}{\ChefHat}}}

\newsavebox{\OvenBox}
\AtBeginDocument{\savebox{\OvenBox}[\ovenwidth]{\MakeOven}}%
\NewDocumentCommand \Oven {}{\usebox{\OvenBox}}%

4.6 Point Size of Default Roman and Sans Fonts
The IngredientsAndSteps environment and the \RecipeStory and \ChapterIntro commands (discussed
further below) need to know certain default font parameters (in points) for the fonts they use. We calculated
those values beforehand and stored the hard-coded values:

\def\StdIFontSize{10.95}
\def\StdSFontSize{10.95}
\def\StdIBaseline{13.6}
\def\StdSBaseline{13.6}
\def\RStoryFontBaseline{15.6pt}
\def\CIntroFontBaseline{16.8pt}

21

Part VI

Elements of a Cookbook – the Details
1 Chapter Introduction
In a cookbook, chapters tend to be organized into logical units such as cookies, pasta, appetizers, etc.
Following the chapter name, there will usually be some introductory text for that chapter. We call that the
chapter intro.

Use the \ChapterIntro command to enter your chapter intro text. The command sets the default (roman
serif) font to a larger size (14 points). A simplified version of the \ChapterIntro command follows. The
actual code (page 31) includes an optional argument that you will rarely use:

\NewDocumentCommand \ChapterIntro {+m}{\FontChapterIntro{#1\par}} % the \par needed by \lettrine

As noted, the \ChapterIntro command sets a default font face and size. However, you are free to
use most any of the LATEX text markup commands. You might make some text bold or italic, or use an
enumerate environment (e.g., to list you favorite cookie recipes). In our book, we have elected to use the
\lettrine command to create a “drop cap” effect – see the separate discussion of this on page 12.

2 Recipe Name and Yield
A new recipe is introduced with a recipe name and, often, with information regarding the “yield” of the recipe
(e.g., “makes 36 cookies” or “serves 4 to 6”, etc.). To enter this information, we use the \RecipeNameAndYield
command. It uses a key/value interface of the form:

\RecipeNameAndYield{〈key=value, ...〉}

The key/value options are as follows:

• [Name=] Required. This is the recipe name. it is the only required key/value option.
• [Yield=] Optional. You can optionally provide the “yield” of the recipe.
• [NoIdxName=] Optional. As a general rule, the recipe name (as entered in the Name= option) is

included in the Index to the cookbook (in the back matter). However, if you set this key to the number
’1’, the recipe name will not be placed in the Index. The purpose of this option is to allow you to make
enties in the \index that are somewhat different than the actual recipe name. For example, perhaps you
want to slightly shorten the recipe name for the Index.

• [IndexA=] Optional. This is where you would enter alternate text for this recipe’s index.
• [IndexB=] Optional. Use this if you want another recipe index entry.
• [IndexC=] Optional. Use this if you want yet another recipe index entry.
• [XRefLabel=] Optional. Normally, recipes do not have a cross-reference \label created. Use this

key/value option if you want to create a cross-reference \label for this recipe (the value entered here
is the \label). That allows you to reference this recipe’s page number from another location in the
cookbook.

Side Note
This is a good place to remind you of the special handling needed when the value element of a
key/value entry includes a comma. Suppose, for example, that your recipe is Pasta with Sausage,
Tomatoes and Cream. If your key/value entry is Name=Pasta with Sausage, Tomatoes and
Cream, then they key/value parser will think the Name= entry ends at the comma. The solution
is to put an extra set of curly braces around the value, such as: Name={Pasta with Sausage,
Tomatoes and Cream}. That tells the parser to treat the internally braced text as one unit.

Following is the code defining the \RecipeNameAndYield command:

22

\pgfkeys{
/RecipeNameAndYield/.is family, /RecipeNameAndYield,

default/.style = {Name = 0, NoIdxName = 0, XRefLabel = \empty, Yield = \empty,
IndexA = \empty, IndexB = \empty, IndexC = \empty},

Name/.estore in = \RecipeName,
NoIdxName/.estore in = \NoIndexName,
IndexA/.estore in = \IdxA,
IndexB/.estore in = \IdxB,
IndexC/.estore in = \IdxC,
XRefLabel/.estore in = \XRefLbl,
Yield/.estore in = \RecipeYield,

}

\NewDocumentCommand \RecipeNameAndYield {m}{%
\pgfkeys{/RecipeNameAndYield, default, #1}%

% Put the recipe name in the Index, unless the user sets NoIdxName = 1:
\ifnum\NoIndexName=1 \relax\else\index{\RecipeName}\fi

% Can add up to three other Index entries:
\ifx\IdxA\empty\relax\else\index{\IdxA}\fi
\ifx\IdxB\empty\relax\else\index{\IdxB}\fi
\ifx\IdxC\empty\relax\else\index{\IdxC}\fi

% Did the user ask us to set up a label for cross-reference?:
\ifx\XRefLbl\empty\relax\else\RecipeLabel{\XRefLbl}\fi

% Add a bookmark (only adds bookmark if hyperref is active):
\ifnum\NoIndexName=1 \RecipeBookmark{\IdxA}\else\RecipeBookmark{\RecipeName}\fi

% Now write the recipe name and (possibly) the yield
\begin{center}%

{\FontRecipeName{\RecipeName}}\par%
\ifx\RecipeYield\empty\relax\else {\textit{\RecipeYield}}\par \fi%

\end{center}%
}

3 Recipe Story
Often there is a story or other information specific to a recipe. In our design, that story follows the recipe’s
RecipeNameAndYield and precedes its IngredientsAndSteps. We call it the recipe story.

For reasons of readability, and for visual interest, we indent both the left and right margin of the recipe
story by 20 points and use a font size of 13 points. However, like the chapter intro, you are free to use most
any of the LATEX text markup commands9. A simplified version of the \RecipeStory command follows. The
actual code (page 29) includes an optional argument that you will rarely (if ever) use.

\def\RecipeStoryIndent{20 pt}
\NewDocumentCommand \RecipeStory {+m}{%

\FontRecipeStory
\leftskip=\RecipeStoryIndent \rightskip=\leftskip
{#1\par} % the \par needed by \lettrine

}

4 Ingredients and Steps
Following the recipe name/yield and (possibly) a recipe story, there is a list of the ingredients, plus the steps
required to make the recipe. We have formatted this section into two columns, with the ingredients in a
semi-bold face of the sans serif font and the steps in a normal face of the roman (serif) font. Both fonts use
the default font size of 10.95 points.

9But see Q 66332 and Q 183569. You cannot use a list environment or similar.

23

The code to accomplish this uses the IngredientsAndSteps environment to establish the two-column
format, and then the \ListIngredientsAndSteps command to list the ingredients and steps. We discuss
them below.

4.1 The IngredientsAndSteps Environment
A simplified version of the IngredientsAndSteps environment follows. The actual code (page 29) is some-
what complicated. It has no mandatory arguments, but has several optional key=value style arguments
that you will rarely (if ever) use.

When used without optional arguments, the IngredientsAndSteps environment is very simple. Its only
purpose is to establish the two-column format, using code that is equivalent to the following:

\NewDocumentEnvironment{IngredientsAndSteps}{}
{\begin{multicols}{2}} % The "before environment" setup
{\end{multicols}} % The "after environment" cleanup

We simply provide a wrapper around the multicols environment where we select the two-column option.

4.2 The \ListIngredientsAndSteps Command
We use the \ListIngredientsAndSteps command to list the ingredients and provide the steps needed to
make the recipe. There is one optional argument and two mandatory arguments, as follows:

• [Arg 1] Optional. In some recipes, there may be multiple sections of ingredients and steps. For example,
the first section might be the ingredients and steps to make the cake, and the second section the ingredients
and steps to make the frosting. In that case, you may want a label associated with each ingredients and
steps section. The optional argument is the name of that section, formatted in bold italics and using the
clrIngTitle color.

• [Arg 2] Required. This is the list of ingredients. Each ingredient entry is separated by a blank line
(i.e., the paragraph indicator in LATEX text entry). Each paragraph becomes an ingredient in the list,
formatted as \raggedright (not right justified), with a separation of 2 points between paragraphs.

• [Arg 3] Required. This is the recipe steps. Each step entry is separated by a blank line (again, the
paragraph indicator). Each paragraph becomes a recipe step. Unlike the ingredients, the steps are
formatted as justified (the document default). We use the enumerate list environment to list the steps
by number.

Following is the code defining the \ListIngredientsAndSteps command:

\NewDocumentCommand \IngredientsHeading {O{0} m O{2}}%
{\begingroup \setlength{\parindent}{0pt} \ifnum #1 > 0 {\vspace{#1 pt}}\fi
\FontIngTitle\color{clrIngTitle} #2\par\vspace{#3 pt} \endgroup}%

\NewDocumentCommand \ListIngredientsAndSteps {o +m +m}{%
\IfValueT {#1}{\IngredientsHeading{#1}[3]}%
{\begingroup\ifx\relax#2\relax\else\FontIngredients{}\IngredientsList{#2}\fi\endgroup}% arg2
{\begingroup\ifx\relax#3\relax\else\FontSteps{}\RecipeSteps{#3}\fi\endgroup}% % arg3

}

\NewDocumentCommand \IngredientsList { >{\SplitList{\par}} +m}{%
\setlength{\parskip}{2pt}\raggedright%
\ProcessList{#1}{\ProcessIngList}}

\newcommand\ProcessIngList[1]{\hangindent1em #1\par}

\NewDocumentCommand \RecipeSteps { >{\SplitList{\par}} +m}{%
\begin{enumerate}[itemsep=2pt plus 1 pt minus 1pt, parsep=0pt plus 1pt,

topsep=4.5pt plus 2.0pt minus 1.0pt, leftmargin=*]
\ProcessList{#1}{\item}

\end{enumerate}
}

24

As indicated in the description of the optional argument, please note that one IngredientsAndSteps
environment may contain more than one \ListIngredientsAndSteps command.

5 Attribution
If the source of the recipe is known, it is proper to acknowledge that source. In that case, after the listing of
ingredients and steps, we include an attribution. It is formatted as right justified and italics, in the default
11 point roman/serif font. The code:

\NewDocumentCommand \Attribution{m}{{\hspace*\fill}{\textit{#1}}}%

6 Additional Comments/Advice
There may be some recipe side notes and/or advice that is not properly included within the recipe, but is
noted afterwards. We provide three separate environments to display that information – the Tip, the Cheffy,
and the ChefNotes environments – all based on the tcolorbox package. All three environments take one
mandatory arguments, which is the text (and any associated LATEX markup commands) to be included in
the body of the tcolorbox environment.

For example, the following code...:

\begin{Tip}
{You can substitute \fr1/2 cup of vegetable or light olive oil for the butter.}

\end{Tip}

\begin{Cheffy}
{Using some almond flour results in biscotti with a delightful crunchy texture without making
them hard. I encourage you try useing 25\% almond flour.}

\end{Cheffy}

\begin{ChefNote}
{The amount of flour might vary if you use all-purpose flour versus “00” flour. If Tipo “00”
flour, you might need a little more flour. Use the texture of your dough as a guide.}

\end{ChefNote}

...gives you the following results:

Food for Thought

You can substitute 1⁄2 cup of vegetable or light olive oil for the butter.

Let’s Get Cheffy

Using some almond flour results in biscotti with a delightful crunchy texture without making them
hard. I encourage you try using 25% almond flour.

Chefnotes

The amount of flour might vary if you use all-purpose flour versus “00” flour. If Tipo “00” flour,
you might need a little more flour. Use the texture of your dough as a guide.

Of course, given the needs of your cookbook, you can easily change the title and color of these three
environments. The LATEX code follows (see page 12 for information on the colors used below):

\usepackage{tcolorbox}
\tcbset{fonttitle=\FontTitleColorBox}

25

\NewDocumentEnvironment{Tip}{+m}
{
\begin{tcolorbox}[colback=clrBackTip,colframe=clrFrameTip, title=Food for Thought]

{#1}%
\end{tcolorbox}
}

\NewDocumentEnvironment{Cheffy}{+m}
{
\begin{tcolorbox}[colback=clrBackCheffy,colframe=clrFrameCheffy, title=Let's Get Cheffy]

{#1}%
\end{tcolorbox}
}

\NewDocumentEnvironment{ChefNotes}{+m}
{
\begin{tcolorbox}[colback=clrBackNotes,colframe=clrFrameNotes,title=Chefnotes]

\ChefNote{}{#1}%
\end{tcolorbox}
}

7 Odds and Ends
This section includes a number of cooking-related commands that were included in our preamble. Some you
may find useful; others, not so much. Even if not right for your cookbook, we hope you can use the ideas
here to make your own “helper” commands.

7.1 Various Simple but Useful Commands/Defines
We present the code immediately below and selectively discuss that code following:

\def\nl{\par} % see Q 96247 for why we defined \nl for use with pgfkeys

\NewDocumentCommand \PreheatC{m}{Preheat oven to #1\Degrees convection.\thinspace\Oven}%
\NewDocumentCommand \PreheatR{m}{Preheat oven to #1\Degrees regular oven.\thinspace\Oven}%

\NewDocumentCommand \Tbl{o}{\IfNoValueTF{#1}{tablespoon }{tablespoon#1}}%
\NewDocumentCommand \tsp{o}{\IfNoValueTF{#1}{teaspoon }{teaspoon#1}}%
\NewDocumentCommand \Pd{o}{\IfNoValueTF{#1}{pound }{pound#1}}%
\NewDocumentCommand \Ounce{o}{\IfNoValueTF{#1}{ounce }{ounce#1}}%
\NewDocumentCommand \Degrees{o}{\IfNoValueTF{#1}{\TextDegree{} }{\TextDegree{}#1}}%

\NewDocumentCommand \AxB{m m o}{{#1\thinspace{x}\thinspace#2}\IfValueT{#3}{#3}}%
\NewDocumentCommand \AxBxC{m m m o}{%

{#1\thinspace{x}\thinspace#2\thinspace{x}\thinspace#3}\IfValueT{#4}{#4}}%

\NewDocumentCommand \Inch{m}{{#1-inch}}%
\NewDocumentCommand \EditNote{m}{{{\color{clrEditNote} #1}}}%
\NewDocumentCommand \Quote{m}{{``#1''}}%

\NewDocumentCommand \IngredientsSeparator{}{{\FontStepsDefault \CtrDots\CtrDots}}%
\NewDocumentCommand \SeparateParagraphs{}{{\vskip 5pt}}%
\NewDocumentCommand \Recipe{+m}{{\textit{\textsb{#1}}}}%

The definition of \nl is needed to get around a problem with the pgfkeys package (for handling
key=value arguments), because pgfkeys does not allow use of \par in a value.

There is a story behind the \Preheat commands. Traditionally, cookbooks have assumed the reader has
only a regular (not convection) oven. We went back and forth on whether we should stick with tradition.

26

When we surveyed friends and family most likely to use our cookbook, almost all had convection ovens. If we
gave cooking times and temperatures only for regular ovens, those times and temperatures would be wrong
for the vast majority of our readers. Our compromise was to include an \Oven image (drawn using the tikz
package) after the \Preheat instructions. That oven acts as a reminder to the reader that they may need
to adjust time and temperature based on their particular oven type. Of course, even if the reader has the
indicated oven type, it also acts as a reminder that each oven is different – they should adjust if their oven
normally cooks hotter or cooler. If the \Oven image is too quirky for you, just remove it from the \Preheat
commands.

The five commands (beginning with \Tbl and ending with \Degrees) first came about due to indecision.
When first entering our recipes, we couldn’t decide whether “teaspoon” and “tablespoon” should be spelled
our or abbreviated. We put off the decision by using these commands, which could be redefined later based
on our final decision. We quickly ran into a problem in cases where we wanted no space after the command,
such as plurals (needing an ’s’ after tablespoon), punctuation or closed parenthesis. That lead to the current
approach, with an optional argument that is appended without an space; without the optional argument, a
space is automatically inserted.

The next two commands (\AxB and \AxBxC) are used to get the right spacing when you want “5 x 7” or
“5 x 7 x 2”. By using \thinspace, we believe the results are better: e.g.: “5 x 7” and “5 x 7 x 2”. We also use
the same optional argument technique as with teaspoon.

We use the \EditNote command to insert editing notes (in red) in the cookbook, allowing comments
and notes at places that need some further work. The \Quote command ensures that quote marks around
text are the correct shape for beginning and ending quotes.

In some recipes, there is a logical separation of ingredients into two parts. The \IngredientsSeparator
command provides a visual marker (6 center dots) for that separation.

7.2 \BakeUntil

No doubt, your collection of recipes come from all sorts of sources, many no longer even known to you. There
is no standard way to describe the steps to make a recipe, so your recipes likely vary substantially in the
ordering and wording used to describe common recipe steps. It is good goal to make your cookbook recipes
as consistent as possible in this regard.

One place we constantly ran across this issue is in “Bake Until” instructions. We decided to standardize
our instruction by use of a \BakeUntil command. This command takes one key/value style argument.

The key/value options are as follows:

• [Min=] Required. The minimum baking time.
• [Max=] Optional. The maximum baking time.
• [TPick=] Optional. If equal to 1, then the “until” is “until toothpick tests clean”
• [GBrown=] Optional. If equal to 1, then the “until” is “until golden brown”
• [Until=] Optional. Use this if you want any other “until” phrase.

Here are three examples:

\BakeUntil[Min=15, Max=18, GBrown=1]
\BakeUntil[Min=15, TPick=1]
\BakeUntil[Min=15, Max=18, Until=until firm to the touch]

The results:
Bake about 15-18 minutes, until golden brown
Bake about 15 minutes, until toothpick tests clean
Bake about 15-18 minutes, until firm to the touch

Following is the code defining the \BakeUntil command:

\pgfkeys{
/BakeUntil/.is family, /BakeUntil,
default/.style = {Min = 0, Max = 0, TPick = 0, GBrown = 0, Until = \empty},

Min/.estore in = \BkMin,

27

Max/.estore in = \BkMax,
TPick/.estore in = \BkTPick,
GBrown/.estore in = \BkGBrown,
Until/.estore in = \BkUntil,

}

\NewDocumentCommand \BakeUntil{m}{%
\pgfkeys{/BakeUntil, default, #1}%
\newcount\MyCount \MyCount = \BkMax%
\newcount\MyCase%
{Bake about \BkMin}%
\ifnum\MyCount > 0 {-\BkMax}\fi

{ minutes}%
\ifx\BkUntil\empty \MyCase = 0 \else \MyCase = 1 \fi%
\ifnum\BkTPick = 1 \MyCase = 2 \fi%
\ifnum\BkGBrown = 1 \MyCase = 3 \fi%
\ifcase\MyCase% '0' case - do nothing

\or {, \BkUntil}% '1' case - use the "Until" text
\or {, until toothpick tests clean}% '2' case - TPick
\or {, until golden brown}% '3' case - GBrown

\fi
}

7.3 A Few Other Commands
Copyright. We establish the environment for the copyright page. In that environment: (1) the font size is
set to 9 points, (2) there is no indentation of the first line of a paragraph, and (3) all of the text is pushed
down (as far as possible) to the bottom of the page.

\NewDocumentEnvironment{CopyrightPage}{} % See 31186
{\FontCopyrightPage\setlength{\parindent}{0pt}\par\vspace*{\fill}}
{\clearpage}

Hidden Lines. When listing recipe ingredients and steps, the multicol environment matches the lengths
of the first and second columns. There are some cases where the results don’t look quite right. For example,
the ingredients may take up almost all of the first column, but not quite. So the listing of steps begins
with one (lonely) line in the first column. We use the \InsertHiddenLines command to insert an extra
(non-visible) ingredient that tricks the multicol environment into moving the first line of the recipe steps
to the second column.

The \InsertHiddenLines command takes one parameter: the number of hidden lines to insert:

\newcount\LineCount
\NewDocumentCommand \InsertHiddenLines{m}{%

\LineCount = #1
{%
\newcount\foo \foo=0
\loop % \loop starts the construct ended by \repeat

\par \advance \foo by 1
\ifnum \foo < \LineCount \repeat % \repeat also “serves as” the \fi to the \ifnum
}%

}

8 Handling of Long Recipes
The code for the \RecipeStory command and the IngredientsAndSteps environment is actually more
complicated than was shown above. In both cases, the actual code includes a rarely-used optional parameter.
For a longer recipe, these optional parameters allow certain tweaks to the recipe layout that may allow you
to keep the recipe name plus the full text of the ingredients and steps on one page.

28

8.1 The “Real” \RecipeStory Command
In our standard setup, the recipe story comes after the recipe name and before the ingredients and steps.
One potential problem is that the length of the recipe story may cause the ingredients and steps to continue
past the bottom of the current page. To avoid that problem, we designed the \RecipeStory command to
include an option of dividing the recipe story into two parts. That allows one part (or none) to print before
the ingredients and steps and the remaining part to print after.

The parameters for the actual \RecipeStory command:

• [Arg #1] Optional. Permitted values: non-negative integers less than or equal to the number of lines in
the recipe story. If a value is provided, then the given number of lines (possibly zero) of the recipe story
will be printed before the ingredients and steps. To print the remaining lines after the ingredients and
steps, you issue the \Finish RecipeStory command.

• [Arg #2] Required. This is the text of the recipe story. As mentioned above, this may also include
many of the LATEX text markup commands. (However, if you use the optional argument, your LATEX code
should not change the height of the baseline from the predefine \RStoryFontBaseline value).

The actual code follows:

\def\RecipeStoryIndent{20 pt}
\newbox\StoryBox
\newbox\StoryBoxA
\NewDocumentCommand \RecipeStory {o +m} % arg1 = optional = lines for first part
{ % arg2 = story text
\setbox\StoryBox\vbox

{
\FontRecipeStory
\leftskip=\RecipeStoryIndent \rightskip=\leftskip % Q 66332
{#2\par} % the \par needed by \lettrine
}
\IfNoValueTF {#1} % NoValue=TRUE or NoValue=FALSE?
{\unvbox\StoryBox} % NoValue=TRUE, so flush the full StoryBox
{ % handle the NoValue=FALSE case
\ifnum #1 > 0 % > 0 means we split the story into two part; print the first part here

{ % = 0 means ALL of story is deferred
\setbox\StoryBoxA=\vsplit\StoryBox to #1\dimexpr \RStoryFontBaseline %
\unvbox\StoryBoxA%
}

\fi
}

}

\NewDocumentCommand \FinishRecipeStory{}%
{\ifvoid\StoryBox \else \smallskip\unvbox\StoryBox\par\medskip\fi} %

8.2 The “Real” IngredientsAndSteps Environment
There is one more thing to try if splitting the recipe story, above, does not work to fit the recipe name plus
ingredients and steps all on one page. We have coded the IngredientsAndSteps environment to provide
some additional options.

In it default mode, the IngredientsAndSteps environment simply: (1) creates a two-column environ-
ment, and (2) sets the \FontIngredients and \FontSteps font selection commands to use their default font
size of 10.95 points.

Using an optional parameter with a key/value interface, the the IngredientsAndSteps environment can
be used to change (temporarily) the default text width and default font size. By increasing the text width
and/or decreasing the font size for the ingredients and steps, it might be possible to fit the recipe on one
page. The key/value options are as follows:

• [AdjIFont=] Default value = 1. This is a floating point number that indicates the size you want the
\FontIngredients font, computed as a ratio of the default size. For example, if AdjIFont=0.92, then the

29

font would be set to 92 percent of its default size. IMPORTANT: This is the “controlling” ratio for all
font parameters. If any of the other font parameters are set to 0 or not entered, then that other parameter
will have the same value as set here.

• [AdjIBaseline=] Default value = 0. This is a floating point number that indicates the size you want the
\FontIngredients baseline, computed as a ratio of the default baseline size. For example, if AdjIBase-
line=0.92, then the ingredient font’s baseline would be set to 92 percent of its default size. If 0 or not
entered, then AdjIBaseline = AdjIFont.

• [AdjSFont=] Default value = 0. This is a floating point number that indicates the size you want the
\FontSteps font, computed as a ratio of the default size. For example, if AdjIFont=0.92, then the font
would be set to 92 percent of its default size. If 0 or not entered, then AdjSFont = AdjIFont.

• [AdjSBaseline=] Default value = 0. This is a floating point number that indicates the size you want the
\FontSteps baseline, computed as a ratio of the default baseline size. For example, if AdjIBaseline=0.92,
then the steps font’s baseline would be set to 92 percent of its default size. If 0 or not entered, then
AdjSBaseline = AdjIFont.

• [AddWidth=] Default value = 0. This is amount (taken as points) that you want to increase both the
left and right margins. So, if AddWidth=5, then the text width will be increased by 5 points on both the
left and right margins.

Following is the code defining the IngredientsAndSteps environment:

\usepackage{multicol} % allows multiple column environments
\usepackage[strict]{changepage} % for \adjustwidth
\usepackage{xfp} % for fpeval floating point macro

\pgfkeys{ /IngredientsAndSteps/.is family, /IngredientsAndSteps,
default/.style = {AdjIFont = 1, AdjIBaseline = 0,

AdjSFont = 0, AdjSBaseline = 0,
AddWidth = 0, RaggedCols = 0},

AdjIFont/.estore in = \AdjustIFont,
AdjIBaseline/.estore in = \AdjustIBaseline,
AdjSFont/.estore in = \AdjustSFont,
AdjSBaseline/.estore in = \AdjustSBaseline,
AddWidth/.estore in = \AddPageWidth,
RaggedCols/.estore in = \RaggedColumns,

}

\newdimen\IFont \newdimen\IBase \newdimen\SFont \newdimen\SBase \newdimen\AddWidth

\NewDocumentEnvironment{IngredientsAndSteps}{o}
{ % Do the before-environment setup:
\IfNoValueTF {#1}%

% Handle the simple case = no optional key/value argument:
{\AddWidth = 0 pt}

% Handle the special case = there IS an optional key/value argument:
{
\pgfkeys{/IngredientsAndSteps, default, #1}%

\IFont = \AdjustIFont pt
\IBase = \AdjustIBaseline pt
\SFont = \AdjustSFont pt
\SBase = \AdjustSBaseline pt
\AddWidth = \AddPageWidth pt

\ifdim\IBase = 0 pt \IBase = \IFont \fi
\ifdim\SFont = 0 pt \SFont = \IFont \fi
\ifdim\SBase = 0 pt \SBase = \IFont \fi

\RenewDocumentCommand\FontIngredients{}{\FontIngDefault\fontsize{\fpeval{\StdIFontSize * \IFont}}
{\fpeval{\StdIBaseline * \IBase}}\selectfont}

30

\RenewDocumentCommand\FontSteps{}{\FontStepsDefault\fontsize{\fpeval{\StdSFontSize * \SFont}}
{\fpeval{\StdSBaseline * \SBase}}\selectfont}

}
% Now, finish setup:

\adjustwidth{-\AddWidth}{-\AddWidth}
\begin{multicols}{2}%
} % End of the before-environment setup

% Now do the after-environment cleanup:
{
\end{multicols}
\endadjustwidth

% We need to restore the fonts to default size IF there was an optional key/value argument:
\IfValueT {#1}

{
\RenewDocumentCommand \FontIngredients {}{\FontIngDefault}
\RenewDocumentCommand \FontSteps {}{\FontStepsDefault}
}

} % End of the "after environment" cleanup

9 Adding Images in the Chapter Intro
You may wish to strategically place images in the middle of the chapter intro text. For example, on the first
page of a chapter, you may begin with the chapter intro text, then include image(s) at the bottom of that
first page, and then complete the chapter intro text on the next page.

9.1 The “Real” \ChapterIntro Command
The code for the \ChapterIntro command is shown below. It allows for splitting the chapter intro into two
parts and is essentially identical to the code for the \RecipeStory command. For the use of the optional
first argument, see the \RecipeStory command (page 29). To print the second part of the chapter intro
text, you issue the \FinishChapterIntro command.

\newbox\IntroBox
\newbox\IntroBoxA
\NewDocumentCommand \ChapterIntro {o +m} % arg1 = optional = lines for first part
{ % arg2 = chapter intro text
\setbox\IntroBox\vbox

{
\FontChapterIntro {#2\par}% the \par needed by \lettrine
}

\IfNoValueTF {#1} % NoValue=TRUE or NoValue=FALSE?
{\unvbox\IntroBox} % NoValue=TRUE, so flush the full IntroBox
{ % handle the NoValue=FALSE case
\ifnum #1 > 0 % > 0 means we split the story into two part; print the first part here

{ % = 0 means ALL of story is deferred
\setbox\IntroBoxA=\vsplit\IntroBox to #1\dimexpr \CIntroFontBaseline %
\unvbox\IntroBoxA %
}

\fi
}

}

\NewDocumentCommand \FinishChapterIntro{}%
{\ifvoid\IntroBox \else \smallskip\unvbox\IntroBox\par\medskip\fi} %

31

Part VII

The PDF File
We have two separate goals for the PDF file created by LATEX. We need a PDF file in the proper form to
submit to a print-on-demand printer. We also need a PDF file that is a digital version of the cookbook, but
also includes bookmarks and links. Unfortunately, the two styles of PDF files are not identical and therefore
require different compile-time options.

The best way to show the differences between the digital and print-on-demand compiles is to first describe
our setup for the digital cookbook. We will then describe the changes needed to generate the print-on-demand
PDF file.

1 The Digital Cookbook
In the digital version of the cookbook, we would like to include bookmarks and other links to content.
Specifically, we would like:

• Top-level bookmarks equal to the entries in the Table of Contents.
• Second-level bookmarks for each recipe (associated with its top-level cookbook chapter).
• For the recipe Index, links back to each recipe by clicking on the recipe’s indicated page number.
• Within the cookbook main text, where there is a page number cross-reference to another recipe, a link

back to that recipe by clicking on the cross-reference page number.

We implement these bookmarks and links by using the hyperref and bookmark packages. First, we load
the packages (and set the color of the links):

\usepackage[bookmarks=true,colorlinks=true, allcolors=clrHyperRef]{hyperref}
\usepackage{bookmark} % Q 247158 shows Heiko (the author) loads both hyperref and bookmark

To create a bookmark/link for each recipe, we define the \RecipeBookmark command, which will be
called by the \RecipeNameAndYield command. (The [1] in \pdfbookmark makes the recipe a second-level
bookmark):

\newcounter{ctrRecipe} % initially set to zero by \newcounter macro
\NewDocumentCommand \RecipeBookmark{m}{%

\ifx\%1\empty\relax\else\stepcounter{ctrRecipe}\pdfbookmark[1]{#1}{Recipe\arabic{ctrRecipe}}\fi
}

To create a linkable \label to a recipe, we define the \RecipeLabel command (note: \phantomsection
is from hyperref and marks the linkable location of the recipe). Our \RecipePageNo command then uses
\pageref to display the page number and (via hyperref) provide a link to the recipe \label:

\NewDocumentCommand \RecipeLabel{m}{\phantomsection\label{recipe:#1}}
\NewDocumentCommand \RecipePageNo{m}{\pageref{recipe:#1}}

Finally, we define the \CookbookIndex command (called from cb-frontmatter.tex) to create the recipe
Index, make the Index a top-level part of the bookmarks, and include the Index in the Table of Contents:

\NewDocumentCommand \CookbookIndex{}
{
\cleardoublepage % flush all material and clear until you start new odd numbered (recto) page
\phantomsection\addcontentsline{toc}{chapter}{\indexname} % see also Q 59619
\printindex
}

2 The Print-On-Demand Cookbook
There are generally stricter requirements for PDF files submitted for print-on-demand printing. We discuss
the various issues below.

32

2.1 Embedded Fonts
Your print-on-demand company will require that all of your fonts are embedded in the PDF file. In most
cases, it will be sufficient to include an “embedded subset” (i.e., includes only the glyphs that were actually
used). However, we note Q 24005, where the questioner stated that the print-on-demand company lulu.com
requires full font embedding. If that happens to you, a solution is provided at that question. But, as stated
there, many font licenses disallow full font embedding. Check your font license if that situation arises.

We note that our compiled PDF file includes an embedded subset of our fonts without any special or
additional steps. You should still double-check your PDF file to make sure your fonts are embedded.

As discussed at Section 4.5 (page 21), to avoid any unnecessary font issues, it is best to avoid loading
any font you do not really need. For that reason, we relied on our already loaded fonts (rather than relying
on LATEX macros) for the degree, copyright, bullet and center (or mid) dot glyphs.

2.2 Bookmarks, Annotations, and Comments
Your PDF file should not include any bookmarks, links, annotations or comments. Because our digital
cookbook includes bookmarks and links, we will need different compile-time options. We handle that by
making a few small changes to the preamble. Near the top of the preamble, we use \newif to create a new
conditional: \ifHyperRef. We set the value to \HyperReftrue if we are making the digital cookbook, and
to \HyperReffalse if we are making the printed cookbook. For example, for the printed cookbook:

\newif\ifHyperRef \HyperReffalse

We also modify the first two code snippets shown in the above discussion of the Digital Cookbook. Below,
the hyperref and bookmark packages are only loaded if we have \HyperReftrue. If \HyperReffalse, we
only need to set the \phantomsection and \RecipeBookmark commands to do nothing:

\ifHyperRef
\usepackage[bookmarks=true,colorlinks=true, allcolors=clrHyperRef]{hyperref}
\usepackage{bookmark}

\newcounter{ctrRecipe}
\NewDocumentCommand \RecipeBookmark{m}{%
\ifx\%1\empty\relax\else\stepcounter{ctrRecipe}\pdfbookmark[1]{#1}{Recipe\arabic{ctrRecipe}}\fi

}
\else

\providecommand\phantomsection{}% Q 44088
\NewDocumentCommand \RecipeBookmark{m}{}%

\fi

Side Note
You may run into anomalies in your compile if you switch back and forth between \HyperReftrue
and \HyperReffalse. Because the *.ind index file was created with the “other” option, in the first
switched compile, the contents of that file may contain unknown commands causing compile errors.
Just run the compile again and all should be OK.

2.3 Trim Size, Crop Marks and Other Printer’s Marks
Almost all print-on-demand companies require: (1) that the trim size indicated in the PDF file matches the
trim size requested for the printed cookbooks, and (2) that there are no crop marks or other printer’s marks
in the submitted PDF file.

The \ifCookbookDraft logic discussed on page 10 handles the trim size, plus the crop marks and other
printer’s marks made by the geometry package. We also use \ifCookbookDraft logic to only load the
layout and lipsum packages when we are in draft mode:

33

\ifCookbookDraft
\usepackage{lipsum, layout}

\fi

Note that some print-on-demand printers (e.g., Kindle Direct Publishing) will not accept a PDF file that
includes filler from the lipsum package (or similar).

2.4 PDF/X
Although very few print-on-demand companies require PDF/X compliant documents, it is almost always
their preferred format. We have not taken the extra steps needed for full PDF/X compliance. However, you
may wish to familiarize yourself with this (very large) topic. A good starting point is the documentation for
the pdfx package.

If you use pdfx or other methods of entering metadata (such as title, author, etc.) into you PDF file, be
sure the entered information exactly matches the information you give to your print-on-demand company
in their submittal forms.

2.5 Other Print-on-Demand Issues
Of course, document security of any type must not be used. For the best results, all images should be sized
at 100%, flattened to one layer and inserted into your file at a minimum resolution of 300 dots per inch. You
should expect that all transparent objects will be flattened. See also Section 5.1 on page 12 for consideration
relating to color.

34

Part VIII

Examples
In this part, we present and discuss some example code (mostly for entering recipes). You will see “in action”
the use of various commands and environments, and you will see how we use some of the helper macros. We
assume you have downloaded and installed the makecookbook package, and that you are ready to compile
the sample cookbook that uses mycookbook as its root directory.

Recall that the mycookbook/tex directory holds two example chapters of recipes. To make those recipes
easier to reference here, we name the first recipe “A – (With Recipe Name Here)”, the second recipe
“B – (With Recipe Name Here)”, and so on. Here, we will refer to the included recipes by their first
alphabetic letter only (e.g., “see recipe D”).

1 \RecipeNameAndYield Command

1.1 Recipe A
Recipe A presents the simplest case of the \RecipeNameAndYield command. We enter only the recipe name
(no yield, no special Index entries, no cross-reference label). Our actual code:

\RecipeNameAndYield{Name=A -- Lemon Roasted Potatoes}

1.2 Recipe B
In recipe B the \RecipeNameAndYield command includes an entry for Yield=. We also wanted the Index to
hold only the actual recipe name (without the leading B), so we included NoIdxName=1 and IndexA=Pumpkin
Pancakes.

On second thought, we decided a leading B was needed so you could use the index to find the recipe. We
therefore added IndexB=B!Pumpkin Pancakes, which also allowed us to demonstrate the sub-entry indicator
character !10 and create a sub-entry for this recipe. (Yes, it looks a little funny. In the real world, a sub-entry
only looks right if there are multiple sub-entries under the entry).

Check the Index entries for recipe A and recipe B to see the differences. Please note that you do not
need to include NoIdxName=1 when you use IndexA= (You can have both the original name and up to three
alternate names).

\RecipeNameAndYield{Name=B -- Pumpkin Pancakes, Yield=Yield: 6 Pancakes, NoIdxName=1,
IndexA=Pumpkin Pancakes, IndexB=B!Pumpkin Pancakes}

1.3 Recipe C
Recipe C demonstrates use of XRefLabel= to create a cross-reference label for this recipe. (See recipe D for
the reference back to this recipe). Our actual code:

\RecipeNameAndYield{Name=C -- Pesto, XRefLabel=Pesto}%

1.4 Recipe D
Recipe D demonstrates two things regarding the \RecipeNameAndYield command: (1) the use of \nl to
manage multi-line text for the recipe or yield, and (2) the use of an extra set of curly braces when the
key/value text includes commas. Our actual code:

\RecipeNameAndYield{Name=D -- Pasta Genovese,
Yield={(Pasta with Pesto, Potatoes and Green Beans)\nl Makes 4 to 6 servings}}

10see the makeindex package at ctan.org/pkg/makeindex for documentation of the \index command.

35

2 \RecipeStory Command

2.1 Recipe A
Recipe A presents the typical case, using the \RecipeStory command without the optional argument. We
also demonstrate use of the \lettrine command. Our actual code:

\RecipeStory{\lettrine{T}{his is a recipe} story. \lipsum[66]}

2.2 Recipe E
Recipe E presents the special case, using the \RecipeStory command with the optional argument. Note that
our recipe is the same as recipe A, except we: (1) increased the length of the recipe story, and (2) included
the optional argument to the \RecipeStory command ([8]) that prints only the first 8 lines of the recipe
story before the recipe, with the balance printed at the location of the \FinishRecipeStory command. Our
actual code:

\RecipeStory[8]{\lettrine{T}{his is a recipe} story. \lipsum[1-3]}

3 IngredientsAndSteps Environment

3.1 Recipe A
Recipe A presents the typical case, using the IngredientsAndSteps environment without the optional
(key/value style) argument. In that case, they only thing the IngredientsAndSteps environment does is
set up a two-column environment (using the multicol package) for entering the ingredients and steps. Our
actual code (with pseudo-code for the \ListIngredientsAndSteps command):

\begin{IngredientsAndSteps}
\ListIngredientsAndSteps{...ingredients...}{...steps...}

\end{IngredientsAndSteps}

3.2 Recipe F
Recipe F presents the special case, using the IngredientsAndSteps environment with the optional (key/value
style) argument. Here, we want to shrink the ingredients and steps fonts, and and their baselines, to 92%
of their default size. We also want to increase both the left and right margins by 5 points. Our actual code
(with pseudo-code for the \ListIngredientsAndSteps command):

\begin{IngredientsAndSteps}[AdjIFont=0.92, AddWidth=5]
\ListIngredientsAndSteps[Tomato Meat Sauce]{...ingredients...}{...steps...}
\ListIngredientsAndSteps[Béchamel]{...ingredients...}{...steps...}
\ListIngredientsAndSteps[Assembly]{...ingredients...}{...steps...}

\end{IngredientsAndSteps}

Note that these values allow the recipe to fit on one page (try that recipe without any optional key/value
entries). You might also try playing with the optional key/value entries by entering your own values. For
example, set both fonts and their baselines to different values.

4 \ListIngredientsAndSteps Command

4.1 Recipe A
Recipe A presents the typical case, using the \ListIngredientsAndSteps command without its optional
argument. The first required argument is the list of ingredients, and the second is the list of steps. Our
actual code:

36

\ListIngredientsAndSteps
{ % begin ingredients
2 \Pd[s] baby Dutch gold potatoes, washed and cut in half

\fr1/2 cup water

\fr1/4 cup extra-virgin olive oil

...and the rest of the ingredients
} % end ingredients
{ % begin steps
\PreheatC{375} \ChefNote

In a \Inch{\AxB{9}{13}} baking dish, combine all ingredients except parsley.

Roast for 30 minutes.

...and the rest of the steps
} % end steps

4.2 Recipe F
Recipe F presents the special case, using the \ListIngredientsAndSteps command with its optional argu-
ment. This normally is needed when you have more than one listing of ingredients and steps (e.g., one for
making the cake and one for making the frosting). Our actual code (mostly pseudo-code, and for clarity we
also show the IngredientsAndSteps environment, but not its optional arguments):

\begin{IngredientsAndSteps}
\ListIngredientsAndSteps[Tomato Meat Sauce]
{
...ingredients...
}
{
...steps...
}
\ListIngredientsAndSteps[Béchamel]
{
...ingredients...
}
{
...steps...
}
\ListIngredientsAndSteps[Assembly]
{
...ingredients...
}
{
...steps...
}

\end{IngredientsAndSteps}

4.3 Recipe I
Recipe I presents another special case. You might wish to divide the ingredients into separate groupings,
each with a heading, but only have one grouping of recipe steps. We use the \ListIngredientsAndSteps
command without its optional argument. But we use the \IngredientsHeading helper command (page 24)
to enter those heading within the listing of ingredients. Note the use of optional Arg #1 (for the second
heading) – that is the number of points of vertical skip before the heading. (Not really needed here, but it
would be useful if the heading was not at the top of a column).

37

4.4 Recipes B, C and G
Our IngredientsAndSteps environment uses the multicols environment (from the multicol package). It
creates a two-column environment for entering ingredients and steps. One of the features of the multicols
environment is that it balances the lengths of the first and second column. In some instances, the result
may not look right to you. For example, the ingredients may take up almost all of the first column, but not
quite. To balance the two columns, the multicols environment may put one line from the recipe steps in
the first column.

To work around the above problem, you can use the \InsertHiddenLines command. That command
takes one mandatory parameter, which is the number of hidden lines to insert. Now look at the printed
output for recipes B, C and G. You can probably see that we inserted, respectively, 1, 2 and 3 hidden lines
at the bottom of the first column of those recipes.

Recipe B also uses the \IngredientsSeparator command. That command provides a visual separation
between ingredients. In this case, it separates the dry ingredients from the wet ingredients.

5 \ChapterIntro Command

5.1 Chapter One
Chapter One presents the typical case, using the \ChapterIntro command without the optional argument.
We also demonstrate use of the \lettrine command. Our actual code:

\ChapterIntro{
\lettrine{T}{his is the} chapter intro. \lipsum[1-3]

}

5.2 Chapter Two
Chapter Two presents the special case, using the \ChapterIntro command with the optional argument. We
wanted two side-by-side images at the bottom of the first page of the chapter. After a trial run, we calculated
that the first 16 lines of the chapter into text would fit (with the images) on page one. We print the balance
of the chapter into text with the \FinishChapterIntro command. Our actual code:

\ChapterIntro[16]{\lipsum[1-3]}
\SideBySide[LeftCaption={left caption}, RightCaption={right caption}]{image-a}{image-b}
\FinishChapterIntro{}

38

	I Introduction
	About
	Preliminaries
	Requirements
	Compiler
	Fonts

	License
	Contact Information / Feedback
	Version Information / Change History
	The LaTeX Community / StackExchange

	Installing makecookbook
	How This Document is Organized

	II Managing/Organizing Your Cookbook Files
	III Elements of a Book/Cookbook
	Elements of a Book
	Elements of a Cookbook

	IV Elements of a Book – the Details
	Terminology
	Trim Size and Margins
	Headers and Footers
	Chapter Title Formatting
	Odds and Ends
	Color
	Drop Cap
	Images/Photos

	Front Matter, Main Matter and Back Matter
	Introduction
	Front Matter
	Title Page
	Copyright Page
	Dedication
	Table of Contents
	Other

	Main Matter
	Back Matter

	V Elements of a Book – the Details (Fonts)
	Introduction
	Fonts

	Line Length and Font Size
	Our Selected Fonts
	Serif Font
	Sans Serif Font
	Script

	Code to Implement our Font Usage
	Load Our Fonts
	Handle Special Font Faces
	Commands to Select Our Fonts
	Special Handling of Fractions
	Commands for Certain Glyphs
	Point Size of Default Roman and Sans Fonts

	VI Elements of a Cookbook – the Details
	Chapter Introduction
	Recipe Name and Yield
	Recipe Story
	Ingredients and Steps
	The IngredientsAndSteps Environment
	The \ListIngredientsAndSteps Command

	Attribution
	Additional Comments/Advice
	Odds and Ends
	Various Simple but Useful Commands/Defines
	\BakeUntil
	A Few Other Commands

	Handling of Long Recipes
	The "Real" \RecipeStory Command
	The "Real" IngredientsAndSteps Environment

	Adding Images in the Chapter Intro
	The "Real" \ChapterIntro Command

	VII The PDF File
	The Digital Cookbook
	The Print-On-Demand Cookbook
	Embedded Fonts
	Bookmarks, Annotations, and Comments
	Trim Size, Crop Marks and Other Printer's Marks
	PDF/X
	Other Print-on-Demand Issues

	VIII Examples
	\RecipeNameAndYield Command
	Recipe A
	Recipe B
	Recipe C
	Recipe D

	\RecipeStory Command
	Recipe A
	Recipe E

	IngredientsAndSteps Environment
	Recipe A
	Recipe F

	\ListIngredientsAndSteps Command
	Recipe A
	Recipe F
	Recipe I
	Recipes B, C and G

	\ChapterIntro Command
	Chapter One
	Chapter Two

