if not modules then modules = { } end modules ['deadstone'] = {
version = 0.100,
comment = "Dead stone calculator for go",

author = "Wolfgang Schuster",
copyright = "Wolfgang Schuster",

}

This is the Lua version of my deadstone calculator. It is a nearly one to one copy of my
original idea of my method, | developed to find the dead stones on the goban.

laststone = 1

The function clearboard is called at the begin of a new board to initialize all fields with the
value 0 and the margins with the value 3. | need this values for the later calculations of the
field states.

function clearboard()
field = {}
for y=0,tex.count.boardsize+1 do
fieldly] = {}
for x=0,tex.count.boardsize+1 do
if x==0 then
fieldyx] = { 3,0}
elseif x==tex.count.boardsize+1 then
fieldyx] = { 3,0}
elseif y==0 then
fieldyx] = { 3,0}
elseif y==tex.count.boardsize+1 then
fieldyx] = { 3,0}
else
fieldy[x = { 0,0 }
end
end
end
end

To decide wheter | handle in the calculation a white or a black stone the state for stone and
enemy depends of the current color. The value for marked depends also on the current stone
color to reset already living stones in the last step back to the normal color. This could have
been done also by checking the current stone color but two different values work without
this test. The values for wall, error (should never happen) and dead is the same for both,
black and white stones. There is no need to make a difference between them.

function blackstone()
stone=1



enemy=2

wall=3

marked=4

error=6

dead=7
end

function whitestone()
stone=2
enemy="1
wall=3
marked=5
error=6
dead=7
end

The function doprocesstones is used to call all subfunctions. It is called twice, once for the
black stones and a second time for the white stones.

function doprocesstones()
markstones()
deadstones()
—-- for n=1,tex.count.deadcount
-- checkstones()
-- end
checkstones()
checkstones()
revertstones|)
end

The order in which the last function doporocesstones ist called depends on the current placed
stones. This mean if the last stone was a black one, we look at the begin for dead white
stone and reverse if the last stone was a white one. We could check the current stone color
with the variable laststone and test for the numeric value.

function processtones|)
-- we placed a black stone
if laststone==1 then
processwhitetones()
processblackstones()
-- we placed a white stone
elseif laststone==2 then
processblackstones|()
processwhitetones()



end
end

function processblackstones()
blackstone()
doprocesstones()

end

function processwhitetones()
whitestone()
doprocesstones|)

end

The function markstones mark the stones if they have the right stones on their sides or let
them keep untouched.

function markstones|)
for y=1,tex.count.boardsize do
for x=1,tex.count.boardsize do
if field[y][x][1]==stone then
if (field[y]x-1][1]J==wall or field[y]x-1]1]==enemy or field[y]x-1][1]J==marked)
and (field[y]x+1]1]==wall or field[y]x+1]1]==enemy or field[y]x+1]1]==stone)
and (fieldy-1]x][1]J==wall or field[y-1]x][1]==enemy or field[y-1]x]1]==marked)
and (fieldly+1]x][1]==wall or fieldly+1]x|[1]==enemy or fieldjy+1]x][1]==stone)
then
field[y]x] = { marked, field[y]x][2] }
end
end
end
end
end

The function deadstones set stones with the value marked to dead if the conditions in the
function are true.

function deadstones|)
for y=tex.count.boardsize,1,-1 do
for x=tex.count.boardsize,1,-1 do
if field[y] x| 1]J==marked then
if (field[y]x-1][1]J==wall or field[y]x-1]1]==enemy or field[y]x-1][1]==marked)
and (field[y]x+1]1]==enemy or field[y]x+1]1]==wall or field[y]x+1]1]==dead)
and (fieldly+1]x]1]==enemy or fieldly+1]x[1]==wall or fieldly+1]x]1]==dead)
then
field[y]x] = { dead, fieldy]x]2] }



end
end
end
end
end

Because the function deadstones can sometimes set already living stones to dead. To prevent
this in the final result this function looks through all stones with a loop in reverse direction
and reset the values to their original value if the stone is not dead and should remain on the
board. The function is currently called twice within processtones but this can be changed
with the counter deadcount.

function checkstones()
for y=1,tex.count.boardsize do
for x=1,tex.count.boardsize do
if field[y][x]1]J==marked then
fieldy][x] = { stone, field]y]x]2] }
elseif field[y][x]1]==dead then
if (field[y][x-1][1]==dead or field[y][x-1]1]==enemy or field[y]x-1]1]==wall)
and (field[y]x+1]1]==dead or field[y][x+1]1]==enemy or field[y]x+1]1]==wall)
and (fieldly-1]x[1]==dead or field[y-1]x][1]==enemy or field[y-1]x][1]==wall)
and (fieldly+1]x][1]==dead or fieldly+1]x|[1]==enemy or fieldjy+1]x]1]==wall)
then
field[y]x] = { dead, field[y]x]2] }
else
field[y|x] = { stone, field[y]x]2] }
end
end
end
end
end

The last thing to do after all dead stones are found on the board is to remove them and to
reset all other stones which are still in a marked state or we will get wrong input for the
next move.

function revertstones|)
for y=1,tex.count.boardsize do
for x=1,tex.count.boardsize do
if field[y][x]1]J==marked then
field[y]x] = { stone, field[y]x]2] }
elseif field[y][x]1]==dead then
appendtodeadstonelist(y,x,stone field[y]x]2]) -- append to deadstonelist
fieldly]x| = { 0,0 } -- before reseting the field



end
end
end
end

10 To use the dead stones we found in this run on the board for later use they are saved in
two commalist, one for white stones and another one for the black ones. They can be used
by other macros, the only thing here is done is to append the removed stones in the current
run to the already romved stones in one of the former calculations.

function appendtodeadstonelist(row,column,color,count)
if color==1 then
tex.print("\\expanded{\\appendtocommalist{{"
row .. ":" column .. ":1:" . count .. "}}}\\deadblackstones")
elseif color==2 then
tex.print("\\expanded{\\appendtocommalist{{"
~row .. ":" Lcolumn .. ":2:" . count .. "}}}\\deadwhitestones")
end
end



Functions

a m

appendtodeadstonelist 5 markstones 3

b p

blackstone 7 processblackstones 3
processtones 2

c processwhitetones 3

checkstones 4

clearboard 7 r
revertstones 4

d

deadstones 3, 4 w

doporocesstones 2 whitestone 2

doprocesstones 2

Variables

l laststone 17
laststone 2



