
18 support.nw December 2, 2015

2.8 Sub-page references

This is the wonderful code that Dave Love provided to make page references
like 7a, 7b, and so on.

This code provides a mechanism for defining ‘page sub-references’ using
\sublabel{foo} referenced with \subpageref{foo}. Sub-references will be
numbered like these real examples: 18a, 18b, 18c etc. unless there is only one
on the page, in which case the letter will be dropped like this: 4b.

To be able to use \subpageref we must define the label with \sublabel,
used like label. (Using \ref with a label defined by \sublabel will produce
the sub-reference number, by the way, and \pageref works as expected.) Note
that \subpageref is robust and \ref and \pageref are redefined to be robust
also, as they will be in future LATEX releases. Incidentally, these expand to the
relevant text plus \null—you might want to strip this off, e.g. for sorting lists.

There are various ways we could attack this task (which is made non-trivial
by the well-known asynchrony of (La)TEX’s output routine), but they all must
depend on hacks in the .aux file or a similar one. Joachim Schrod’s fnpag.sty
does the same sort of thing differently to this LATEX-specific approach. See
latex.tex for enlightenment on the cross-referencing mechanism and the LATEX
internals used below. [DL: The internals change in LATEX2e compared with
LATEX 2.09. The code here still works, though.]

The new-style LATEX page-reference macros all work the same way: if the
thing is undefined, barf. Otherwise, do the specified thing. We need to handle
the fact that the expansion of the label may be two items or five items, depending
on whether hypertext is used. Since we’re only ever interested in the first
two items, we use a hack—the “do the specified thing” must be defined as
\def\dome#1#2#3\\{...} where ... uses only the first two parameters.

18d 〈noweb.sty 2b〉+≡ ⊳ 17c 18e ⊲

\newcommand\nw@genericref[2]{% what to do, name of ref

\expandafter\nw@g@nericref\csname r@#2\endcsname#1{#2}}

\newcommand\nw@g@nericref[3]{% control sequence, what to do, name

\ifx#1\relax

\ref{#3}% trigger the standard ‘undefined ref’ mechanisms

\else

\expandafter#2#1.\\%

\fi}

Much of what we want can be done by pulling out the first, second, or first and
second elements of a ref.

18e 〈noweb.sty 2b〉+≡ ⊳ 18d 19a ⊲

\def\nw@selectone#1#2#3\\{#1}

\def\nw@selecttwo#1#2#3\\{#2}

\def\nw@selectonetwo#1#2#3\\{{#1}{#2}}

December 2, 2015 support.nw 19

The \subpageref macro first does a normal \pageref. If the reference is
actually defined, it then goes on to check whether the control sequence 2on〈page
referenced〉 is defined and sets the \ref value to get a etc. if so. The magic,
of course, is in defining the 2on bit appropriately. \subpageref also tries to
include the right hyperstuff for xhdvi.

19a 〈noweb.sty 2b〉+≡ ⊳ 18e 19b ⊲

\newcommand{\subpageref}[1]{%

\nwhyperreference{#1}{\nw@genericref\@subpageref{#1}}}

\def\@subpageref#1#2#3\\{%

\@ifundefined{2on#2}{#2}{\nwthepagenum{#1}{#2}}}

\subpagepair produces a {subpage}{page} pair.

19b 〈noweb.sty 2b〉+≡ ⊳ 19a 19c ⊲

\newcommand{\subpagepair}[1]{% % produces {subpage}{page}

\@ifundefined{r@#1}%

{{0}{0}}%

{\nw@genericref\@subpagepair{#1}}}

\def\@subpagepair#1#2#3\\{%

\@ifundefined{2on#2}{{0}{#2}}{{#1}{#2}}}

\sublabel is like the \label command, except that it writes \newsublabel
onto the .aux file rather than \newlabel. For hyperreferencing, all labels must
be hypertext anchors, for which we use \nwblindhyperanchor.

19c 〈noweb.sty 2b〉+≡ ⊳ 19b 19d ⊲

\newcommand{\sublabel}[1]{%

\leavevmode % needed to make \@bsphack work

\@bsphack

\nwblindhyperanchor{#1}%

\if@filesw {\let\thepage\relax

\def\protect{\noexpand\noexpand\noexpand}%

\edef\@tempa{\write\@auxout{\string

\newsublabel{#1}{{}{\thepage}}}}%

\expandafter}\@tempa

\if@nobreak \ifvmode\nobreak\fi\fi\fi\@esphack}

\nosublabel creates a label with a sub-page part of 0.

19d 〈noweb.sty 2b〉+≡ ⊳ 19c 20a ⊲

\newcommand{\nosublabel}[1]{%

\@bsphack\if@filesw {\let\thepage\relax

\def\protect{\noexpand\noexpand\noexpand}%

\edef\@tempa{\write\@auxout{\string

\newlabel{#1}{{0}{\thepage}}}}%

\expandafter}\@tempa

\if@nobreak \ifvmode\nobreak\fi\fi\fi\@esphack}

20 support.nw December 2, 2015

\newsublabel is the macro that does the important work. It is called with
the same sort of arguments as \newlabel: the first argument is the label name
and the second is {〈ref value (never defined)〉}{〈page number (never defined)〉}.
(Note that the only definition here which needs to be global is the one which is,
and that \global is redefined by \enddocument, which will bite you if you use
it. . .)

20a 〈noweb.sty 2b〉+≡ ⊳ 19d 21b ⊲

〈definition of \newsublabel 20b〉

Before we create a \newsublabel for the first time, we set the proper trailers.

20b 〈definition of \newsublabel 20b〉≡ (20a) 20c ⊲

\newcommand\newsublabel{%

\nw@settrailers

\global\let\newsublabel\@newsublabel

\@newsublabel}

First we extract the page number into \this@page.

20c 〈definition of \newsublabel 20b〉+≡ (20a) ⊳ 20b 20d ⊲

\newcommand{\@newsublabel}[2]{%

\edef\this@page{\@cdr#2\@nil}%

Then we see whether it’s changed from the value of \last@page which was
stashed away by the last \newsublabel (or is \relax if this is the first one).
If the page has changed, we reset the counter \sub@page telling us how many
sub-labels there have been on the page.

20d 〈definition of \newsublabel 20b〉+≡ (20a) ⊳ 20c 20e ⊲

\ifx\this@page\last@page\else

\sub@page=\z@

\fi

\edef\last@page{\this@page}

\advance\sub@page by \@ne

If we’ve had at least two on the page, we define the 2on〈page no.〉 macro to
indicate the fact.

20e 〈definition of \newsublabel 20b〉+≡ (20a) ⊳ 20d 21a ⊲

\ifnum\sub@page=\tw@

\global\@namedef{2on\this@page}{}%

\fi

December 2, 2015 support.nw 21

Then we write a normal \newlabel with the sub-reference as the normal
reference value in the second argument. Unfortunately, if we want hypertext
support, the second argument of \newlabel gets complicated. It is either

• {〈ref value (never defined)〉}{〈page number (never defined)〉}, when normal
LATEX is running, or

• {〈ref value (never defined)〉}{〈page number (never defined)〉}{〈text (never de-

fined)〉}}{〈hyper category (never defined)〉}{〈URL (never defined)〉}, when the
hyperref package is running. (We actually detect this by looking for the
nameref package, because that’s the one that changes the use of labels.)

We unify these two things by producing {〈ref value (never defined)〉}{〈page num-

ber (never defined)〉}\nw@labeltrailers
We may have pending labels in support of \nextchunklabel, as defined in

chunk 22a. Because we want to define all of the “pending sublabels” in exactly
the same way, we do something a bit odd—we make the current label a pending
label as well.

21a 〈definition of \newsublabel 20b〉+≡ (20a) ⊳ 20e

\pendingsublabel{#1}%

\edef\@tempa##1{\noexpand\newlabel{##1}%

{{\number\sub@page}{\this@page}\nw@labeltrailers}}%

\pending@sublabels

\def\pending@sublabels{}}

We can’t use \@ifpackageloaded to see if nameref is loaded, because
that is restricted to the preamble, and \newsublabel goes into the .aux file,
which is executed after the whole document is processed. We therefore test for
\@secondoffive. This is lame, but what else can we do?

21b 〈noweb.sty 2b〉+≡ ⊳ 20a 22a ⊲

\newcommand\nw@settrailers{% -- won’t work on first run

\@ifpackageloaded{nameref}%

{\gdef\nw@labeltrailers{{}{}{}}}%

{\gdef\nw@labeltrailers{}}}

\renewcommand\nw@settrailers{%

\@ifundefined{@secondoffive}%

{\gdef\nw@labeltrailers{}}%

{\gdef\nw@labeltrailers{{}{}{}}}}

22 support.nw December 2, 2015

Now we keep track of those pending guys. The goal here is to save them up
until they’re all equivalent to the label on the next chunk. We have to control
expansion so chunks like 21a (21a) can be labelled twice.

22a 〈noweb.sty 2b〉+≡ ⊳ 21b 22c ⊲

\newcommand{\nextchunklabel}[1]{%

\nwblindhyperanchor{#1}% % looks slightly bogus --- nr

\@bsphack\if@filesw {\let\thepage\relax

\edef\@tempa{\write\@auxout{\string\pendingsublabel{#1}}}%

\expandafter}\@tempa

\if@nobreak \ifvmode\nobreak\fi\fi\fi\@esphack}

\newcommand\pendingsublabel[1]{%

\def\@tempa{\noexpand\@tempa}%

\edef\pending@sublabels{\noexpand\@tempa{#1}\pending@sublabels}}

\def\pending@sublabels{}

22b 〈man page: noweb style control sequences 22b〉≡ 32b ⊲

.PP \" .TP will not work with the backslashes on the next line. Period.

\fB\\nextchunklabel{l}\fP

.RS

Associates label \fBl\fP

with the sub-page reference of the next code chunk.

Can be used in for concise chunk cross-reference with, e.g.,

\fBchunk~\\subpageref{l}\fP.

.RE

We need to define these.

22c 〈noweb.sty 2b〉+≡ ⊳ 22a 23a ⊲

\def\last@page{\relax}

\newcount\sub@page

We no longer use Rainer’s new expandable definitions of \ref and \pageref

to minimise the risk of nasty surprises; enough time has elapsed that this should
no longer be necessary.

22d 〈old noweb.sty 22d〉≡
% RmS 92/08/14: made \ref and \pageref robust

\def\ref#1{\@ifundefined{r@#1}{{\bf ??}〈warn of undefined reference to #1 22e〉}%
{\expandafter\expandafter\expandafter

\@car\csname r@#1\endcsname\@nil\null}}

\def\pageref#1{\@ifundefined{r@#1}{{\bf ??}〈warn of undefined reference to #1 22e〉}%
{\expandafter\expandafter\expandafter

\@cdr\csname r@#1\endcsname\@nil\null}}

\def\@refpair#1{\@ifundefined{r@#1}{{0}{0}〈warn of undefined reference to #1 22e〉}%
{\@nameuse{r@#1}}}

22e 〈warn of undefined reference to #1 22e〉≡ (17d 22d)

\@warning{Reference ‘#1’ on page \thepage \space undefined}

December 2, 2015 support.nw 23

Here a a couple of hooks for formatting sub-page numbers, which can be
alphabetic, numeric, or omitted.yle hook

23a 〈noweb.sty 2b〉+≡ ⊳ 22c 24a ⊲

\def\@alphasubpagenum#1#2{#2\ifnum#1=0 \else\@alph{#1}\fi}

\def\@nosubpagenum#1#2{#2}

\def\@numsubpagenum#1#2{#2\ifnum#1=0 \else.\@arabic{#1}\fi}

\def\nwopt@nosubpage{\let\nwthepagenum=\@nosubpagenum\nwopt@nomargintag}

\def\nwopt@numsubpage{\let\nwthepagenum=\@numsubpagenum}

\def\nwopt@alphasubpage{\let\nwthepagenum=\@alphasubpagenum}

\nwopt@alphasubpage

In rare cases, there may be more than 26 chunks on a page. In such a case,
we need a sub-page numbering scheme that can go beyond “a to z.” The scheme
I have chosen is “a to z, then aa to zz, then aaa to zzz, etc.” The conversion
requires a bit of thought because it is not an ordinary conversion of integer to
string as we usually think of such things. The problem is that the meaning of
the letters depends on the position; the letter a acts like a zero in some positions
or a one in others.

The solution I have implemented uses a variable bound which is always equal
to 26k for some k. If we write the recurrence Bk = Bk−1 + 26k, with B0 = 0,
we then use a string of k letters to represent numbers between Bk−1 and Bk.
Within that string, a’s are 0’s, and so on up to z’s which are 25’s, and we use
standard integer-conversion methods to encode n−Bk−1.

The following Icon implementation may be more perspicuous than the TEX
code actually used. Here the variable bound is 26k, with k = 1 initially, and n is
n−Bk−1. The first loop finds the right k, and the second does the usual string
conversion.

23b 〈Icon code for subpage numbering 23b〉≡
procedure alphastring(n)

bound := 26

while n >= bound do {

invariant: bound = 26^(k+1) & n is initial n - B_k

n -:= bound

bound *:= 26

}

while bound > 1 do {

bound /:= 26

d := integer(n / bound)

n -:= d * bound

writes(&lcase[d+1])

}

end

24 support.nw December 2, 2015

Here’s TEX code to achieve the same end. The entire macro body is enclosed
in braces, so that it can be used with \loop without picking up the wrong
\repeat.

24a 〈noweb.sty 2b〉+≡ ⊳ 23a 24b ⊲

\newcount\@nwalph@n

\let\@nwalph@d\@tempcnta

\let\@nwalph@bound\@tempcntb

\def\@nwlongalph#1{{%

\@nwalph@n=#1\advance\@nwalph@n by-1

\@nwalph@bound=26

\loop\ifnum\@nwalph@n<\@nwalph@bound\else

\advance\@nwalph@n by -\@nwalph@bound

\multiply\@nwalph@bound by 26

\repeat

\loop\ifnum\@nwalph@bound>1

\divide\@nwalph@bound by 26

\@nwalph@d=\@nwalph@n\divide\@nwalph@d by \@nwalph@bound

% d := d * bound ; n -:= d; d := d / bound --- saves a temporary

\multiply\@nwalph@d by \@nwalph@bound

\advance\@nwalph@n by -\@nwalph@d

\divide\@nwalph@d by \@nwalph@bound

\advance\@nwalph@d by 1 \@alph{\@nwalph@d}%

\repeat

}}

2.9 WEB-like chunk numbering

Here’s a righteous hack: we get the effect of WEB-like chunk numbers just by
redefining \sublabel to use a counter instead of the current page number. Since
the numbers are all distinct, no sub-page number is ever used.

24b 〈noweb.sty 2b〉+≡ ⊳ 24a 25a ⊲

\newcount\nw@chunkcount

\nw@chunkcount=\@ne

\newcommand{\weblabel}[1]{%

\@bsphack

\nwblindhyperanchor{#1}%

\if@filesw {\let\thepage\relax

\def\protect{\noexpand\noexpand\noexpand}%

\edef\@tempa{\write\@auxout{\string

\newsublabel{#1}{{}{\number\nw@chunkcount}}}}%

\expandafter}\@tempa

\global\advance\nw@chunkcount by \@ne

\if@nobreak \ifvmode\nobreak\fi\fi\fi\@esphack}

\def\nwopt@webnumbering{%

\let\sublabel=\weblabel

\def\nwpageword{chunk}\def\nwpagesword{chunks}%

\def\nwpageprep{in}}

