
The packagesdrt.sty

Paul Isambert
zappathustra@free.fr

http://paulisambert.free.fr/

May 13, 2007

Abstract

This package is designed to help authors typesetting papersaddressing SDRT (Segmented Discourse
Representation Theory). Since SDRT is formal semantics, many of the macros in this package will be
useful for logic in general (and DRT in particular, of course). Actually, I just wrote some simple macros
to make life simpler, and gathered many useful symbols, thatI rename for them to be easier to remember
and to work both in math mode and in text.

Contents

0 Installation 1

1 Boxes 2
1.1 Renaming pi 2
1.2 Building SDRSs 2

1.2.1 Boxes . 2
1.2.2 Conditions .. . 4
1.2.3 Back to our example 4
1.2.4 Some more stuff .. . 5

2 Trees 6
2.1 The commands 6
2.2 The problem 8
2.3 Definitions of the commands 9

3 List of symbols used in SDRT 10
3.1 Notation index 10
3.2 Additional symbols 16

4 Math mode or not? 16

5 Bugs and enhancements 18
5.1 Problems 18
5.2 Things that could be improved 18

0 Installation

This package must be installed and loaded in the usual way. Itrequires thexyling.sty package (al-
ready available in some LATEX distribution, like MiKTeK 2.5) to be installed (but not loaded in your
preamble), in order to draw trees. If, for some reason, you don’t want to download it, just put % before
RequiresPackage{xyling} at the beginning ofsdrt.sty. You won’t be able to draw trees anymore.

Apart from that,xyling.sty usesxypic with thedvips option to draw coloured branches. But then,
when building directly to PDF, branches of the tree disappear, which is somewhat annoying. Thus, either

1

you suppress thedvips option in line 57 ofxyling.sty, keeping in mind that you won’t be able to draw
coloured branches anymore (and actually all branches will look ugly), or you create your PDF file via DVI
PS, for instance (as I did for this documentation: to get everything as nice as possible, especially tables
without bold lines, you should convert your .ps file via GSview, usingFile>Convert, with Type: pdfwrite,
Resolution: 300 - better resolution yields ugly tables; finally, don’t forget to add the extension .pdf to the
name of the output file, since it is not automatic). Anyway, the fine conversion to a PDF file is a problem
in itself, to which I don’t know any complete solution. For instance, horizontal lines in the boxes of this
documentation are sometimes a bit too long in PDF (as can be seen in the first box above), though they are
fine in PS, ending exactly at the vertical line.

1 Boxes

1.1 Renaming pi

In SDRT, clauses are referred to withπ and a subscript and/or a superscript. Thus, to print, for instance,
π′

1, one has to writeπ^{\prime}_{1}, which is not impossible, but boring when typing it ten times
a page. So I designed\lab[]{} (for label), which takes two arguments, to do the job. In the optional first
argument (hence the brackets) you can place as many bars as you want, and the second one refers to the
subscript. The subscript might be anything, and if you want none, leave this argument empty (but don’t
forget the braces).

Now, most labels have either a superscript, which is rarely more than four bars, or a subscript, which in
general is a number from 0 to 9. So I wrote some commands to makelife easier. Their names are easy to
remember :\labzero, labone... labnine yield π0, π1... π9, and\labprime, \labsecond, \labthird,
\labfourth print π′, π′′, π′′′, π′′′′. This avoids excessive braces, and this will prove useful when building
SDRSs. However, those commands eats subsequent space. When drawing a box or a tree, this won’t be a
problem, since in general they’re followed by either a punctuation mark or nothing. Thus, no special care is
required. On the other hand, in the course of a paragraph, gobbling of subsequent space is always annoying.
If you want to use them anyway, a simple solution is to add a backslash at the end of the command. Thus,
write \labone\ is fine to yield ‘π1 is fine’. Of course, don’t use that backslash before a punctuation
mark.

1.2 Building SDRSs

1.2.1 Boxes

An SDRS look like this:

π0

π0 :

π1, π
′′

π1 : Kπ1 , Elaboration(π1, π
′′)

π′′ :

π2, π5, π
′

π2 : K+
π2
, π5 : K+

π5
,

Narration(π2, π5)
Elaboration(π2, π

′)

π′ :

π3, π4

π3 : K+
π3
, π4 : K+

π4

Narration(π3, π4)

2

(This is the famous “Max’s great night” example.) We need thefollowing command:\SDRS1. It takes two
mandatory argument and an optional one. In the first mandatory argument, you put the so-called Universe
of the (S)DRS (that is, the upper part of the box), and in the second one, the Conditions (the lower part of
the box). Thus,\SDRS{Universe} {Conditions}will yield:

Universe

Conditions

In the Universe and in the Conditions, you can put commas between the elements. However, although there
is no big risk with the Universe, you might create ugly long lines in the Conditions, so you’d better break
them with\\. So, instead of\SDRS{Universe}{Condition1, Condition2,Condition3, Condition4},
which gives:

Universe

Condition1, Condition2, Condition3, Condition4

write \SDRS{Universe}{Condition1, Condition2,\\Condition3, Condition4} and you’ll get :

Universe

Condition1, Condition2,
Condition3, Condition4

Moreover, Conditions in SDRT are on their own line in general, though you may put two on the same to
save space. Whatever you decide, remember that legibility must be the rule, hence always write a condition
containing another sub-box on a line alone, just like in the example above.

The optional argument (between brackets) is the label whichis defined by the box. Thus,
\SDRS[\labone]{Universe}{Conditions} for example prints the following:

π1 :

Universe

Conditions

Of course, you can put any structure into another one by writing it among the Conditions. So, for example,
you can write\SDRS{\labone}{\SDRS[\labone]{Universe}{Conditions}} and yield:

π1

π1 :

Universe

Conditions

Now, you have to be aware of the fact that everything in (S)DRSs is in math mode. And in math mode,
everything is in italics and spaces between words is suppressed. It is exactly what we need when drawing
usual (S)DRSs, but this might be problematic if we want something like this:

1\drs and \sdrs were part of the covington.sty package. I modified the code slightly and rewrote it for sdrt.sty,

since I wanted better alignment in the boxes and generalized math mode. Moreover, \sdrs just printed a sentence

above the box, and didn’t handle what \SDRS does. Finally, my command is written in capital letters, so it won’t

conflict with \sdrs if you also use covington.sty.

3

π1

π1 : [John loves Mary]

If we just write\SDRS{\labone}{\labone: [John loves Mary]}, well, this will yield:

π1

π1 : [JohnlovesMary]

All we have to do is to add $’s around the sentence. Since math mode is defined by $...$ (automatically in
this package), it is obvious that embedding another pair of $’s in the latter will produce two math modes
with text mode in between. Thus, just write\SDRS{\labone}{\labone: [$John loves Mary$]} and
everything will be fine. On the other hand, never write something like α in a (S)DRS, since it
would suppress the math mode greek letters need, for exactlythe same reason. So just remember that
(S)DRS are ‘automatic math environment’.

1.2.2 Conditions

Now, we can build boxes as we want. But we must be able to write conditions of the formπ2 : Kπ2easily.
The command for this is\klab, which works just like\lab, i.e. takes two arguments, one for the super-
script (optional) and one for the subscript. Thus,π2 : Kπ2 is typed out with\klab{2}. Just like\lab,
\klabzero, \klabone... \klabnine will print π0 : Kπ0 , π1 : Kπ1 ... π9 : Kπ9 . There is also the ‘starred’
version, when some underspecification is at stake :π3 : K+

π3
. So there’s the code\klabstar, which works

exactly like\klab, with the easy version too, that is\klabstarzero,\klabstarone, and so on2.
Finally, conditions of the formNarration(π2, π5) are simply written withNarration(\labtwo, \labfive).

Since (S)DRSs are in math mode, you don’t need to emphazise the name of the relation. This also means
that in the course of your text, you have to add math mode, hence$Narration(\labtwo, \labfive)$

to yield the same thing. If the arguments of you relation haveonly subscripts, there is a command,
namely\dr{Relation}{subscript1}{subscript2},which automatically produce the right form. Thus
\dr{Narration}{3}{5} yieldsNarration(π3, π5) in any environment.

1.2.3 Back to our example

With all these commands, we can build our example. Here is thecode with the result :

\SDRS{\labzero}

{\SDRS[\labzero]

{\labone, \labsecond}{\klabone, Elaboration(\labone, \labsecond)\\

\SDRS[\labsecond]

{\labtwo, \labfive, \labprime}{\klabstartwo, \klabstarfive,\\

Narration(\labtwo, \labfive\\

Elaboration(\labtwo, \labprime)\\

\SDRS[\labprime]

{\labthree, \labfour}{\klabstarthree, \klabstarfour\\

\dr{Narration}{3}{4}}}}}

2I didn’t designed \klabprime or \klabstarprime an so on like I did with \labprime, since barred labels in

general refer to SDRSs and not to clauses. But they are easy to write with the \klab or \klabstar commands :

\klabstar[’’’]{} for instance will print π′′′ : K
+

π
′′′

.

4

π0

π0 :

π1, π
′′

π1 : Kπ1 , Elaboration(π1, π
′′)

π′′ :

π2, π5, π
′

π2 : K+
π2
, π5 : K+

π5
,

Narration(π2, π5)
Elaboration(π2, π

′)

π′ :

π3, π4

π3 : K+
π3
, π4 : K+

π4

Narration(π3, π4)

This might seem complicated at first sight, but actually it’srather easy if you pay attention to braces. Of
course you don’t need to write the code with all these indentslike I did here for visual convenience.

1.2.4 Some more stuff

There is a ‘presupposed’ version ofSDRS to produce boxes like the following:

∂

x, e3

dog(x)
own(e3, j, x)

πd : ∂

x, e3

dog(x)
own(e3, j, x)

\PSDRS is that command, and it works just like\SDRS, taking the same three arguments. If you want to use
presupposition in text, type\pres, which takes one argument : for instance,\pres{\varsub{K}{\lab{p}}}

yields∂(Kπp
).

In this latter code there is an additional command\varsub{}{}. It is useful to type any kind of variable
(or actually anything else) with a subscript. The first argument is the variable, the second is the subscript.
Of course, it is recursive, so you can typesetABCD

with \varsub{A}{\varsub{B}{\varsub{C}{D}}}.
Thus,e3 in the boxes above is produced by\varsub{e}{3}.

Finally, predicates are created like discourse relations,that isown(\varsub{e}{3},j,x) for instance
(if you aren’t in a (S)DRS, you must add math mode, of course, to get the italics, or add them yourself).
Note that you don’t have to add a space after the comma, since math mode handle it as needed. Now we
can produce an SDRS like the following:

5

π′′

π′′ :

πd

πd : ∂

x, e3

dog(x)
own(e3, j, x)

R(u, v)
R =? u =? v =?
i− scopes(π′′, πd)

Here is the code:

\SDRS{\labsecond}

{\SDRS[\labsecond]

{\lab{d}}{\PSDRS[\lab{d}]

{x, \varsub{e}{3}}{dog(x)\\

own(\varsub{e}{3},j,x)}\\

R(u, v)\\

R=?\ u=?\ v=?\\

i-scopes(\labsecond, \lab{d})}}

Note that\ is necessary betweenR =?, u =? andv =?, otherwise math mode will eat spaces between
those conditions.

2 Trees

2.1 The commands

The most powerful package I know to draw trees is Ralf Vogel’sxyling.sty. It is powerful but it needs
some care. For instance, you can’t produce an SDRT tree without adjusting the length of the branches and
the alignment of the labels, otherwise you get something like this :

π0

π1

Elaboration

π′′

π2

Narration
π5

π′

π3

Narration
π4

Obviously, that’s not what we want to do. So I wrote some macros with the right adjustment. Before
devising them, we need to know how exactlyxyling works (for details, see the documentation of that
package). A tree is made of nodes placed in a grid, which is like a tabular : & marks the passage to another
column, while\\ begins another row. Here is an example to compare the output with the underlying grid:

6

A

B C

& A & \\

B & & C

In general, the code for the branches is written with the starting node (the mother or the leftmost sister),
and the target node is specified as an argument. Now, here are the commands.\sdrtree{} is a kind
of environment. The argument is the structure of the tree.\LAB{} denotes the node, whose name is the
argument. Thus, for instance, with

\sdrtree{

&\LAB{\labzero} \\

&\LAB{\labone} \\

\LAB{\lab[’’]{p}}& &\LAB{\labsecond}

}

we produce the following tree (I displayed the code with spaces for visual convenience, but of course you
could write it on a single line with no space at all... although such a presentation avoids many errors with
big trees):

π0

π1

π′′
p π′′

Now we have to draw branches.\cons draws a vertical line from the mother (likeπ0 in this example) to
the sister (likeπ1). \consl draws a line between a mother and a sister on the left (like betweenπ1 and
π′′

p) and\consr does the same with a sister on the right (likeπ′′ if π1 is the mother).\srel{}, \srell{}
and\srelr{} work the same, except that they draw an arrow from the starting node to the target, and take
an argument, which is the name of the (subordinating) discourse relation between the labels at the nodes3.
Finally,\crel{} draws a horizontal arrow between two sisters with the name ofthe (coordinating) relation
as the argument. Then, with the following code we have the following tree:

\sdrtree{

&\LAB{\labzero}\srel{Explanation} \\

&\LAB{\labone}\consl\consr \\

\LAB{\lab[’’]{p}}\crel{Continuation}& &\LAB{\labsecond}

}

3If there is a subordinating relation between, say π1 and π2, and the same relation between π1 and π3, usually

in SDRT this relation holds between π1 and an intermediate label like π′, which in turn is made of π2 and π3 linked

by at least a Continuation relation. So, in general, we have the first tree below but not the second one:

π1

Relation

π′

π2
Continuation

π3

π1

Relation Relation

π2
Continuation

π3

Thus, \srell and \srelr should be useless. But they aren’t, since the analysis above might be discussed or at least

might use trees like the second one to illustrate the demonstration.

7

π0

Explanation

π1

π′′
p Continuation

π′′

And here is the tree drawn from our first big box:

π0

π1

Elaboration

π′′

π2
Narration

π5

π1

π3
Narration

π4

And here is the code:

\sdrtree{ & &\LAB{\labzero}\cons\\

& &\LAB{\labone}\srel{Elaboration}\\
& &\LAB{\labsecond}\consl\consr\\
&\LAB{\labtwo}\cons\crel{Narration}& &\LAB{\labfive}\\

&\LAB{\labone}\consl\consr\\
\LAB{\labthree}\crel[rr]{Narration}& &\LAB{\labfour}\\

}

2.2 The problem

We can see that the code for a tree graphically simulates the structure of that tree: for instance,π0 in the
previous example is aboveπ1, which can be seen from the fact that they have the same numberof &’s on
the left. On the other hand,π2 is a left sister ofπ′′, and thus is one column left, i.e.π′′ have one more &
on its left. This is convenient, but it is also problematic.xyling.sty, and thussdrt.sty, does not handle
possible conflicts between nodes. To illustrate this, observe the following grid:

& & A & &

& B & & C &

D & & X & & E

Obviously, X is B’s right daughter and C’s left one at the sametime. If we create a tree with that structure,
i.e. if we type the following code:

\sdrtree{ & &\LAB{\labone}\consl\consr\\

&\LAB{\labtwo}\consl\consr& &\LAB{\labthree}\consl\consr\\

\LAB{\labfour}& &\LAB{\lab{}{X}} & &\LAB{\labfive}\\

}

we produce the following tree:

8

π1

π2 π3

π4 πX π5

It is a nice tree but ovbiously not of the kind that we need. So the question is: how can we draw a right
daughter forπ2 and a left one forπ3 without merging them together? The answer is straightforward: add
columns. That is, create the following grid:

& & & A & & &

& B & & & & C &

D & & X & & Y & & E

Up to now, this is ok. But branches have to be adjusted, otherwise they won’t be able to reach their target.
For instance,\consl starting from A won’t reach B, but the position on the right ofit (and an error message
will be displayed, since there is no node here). Likewise, you won’t be able to draw an arrow from B to
C without modification. That is why\cons, \srel and\crel all have an optional argument between
brackets. This argument is made of d’s, l’s and r’s for ‘down’, ‘left’ and ‘right’ respectively: that’s all we
need to find the target. One d and you go down one row, two d’s andyou go down two rows, three r’s and
you go three columns right... In the grid above B is two columns left from A and one row below. So if you
want a simple line from A to B, you type\cons[dll] next to A’s node. If you want an arrow from B to C,
you write\crel[rrrr]{Relation} next to B. Here is an example:

π1

Relation

π2

Relation Relation
π3

π4
Relation

π5 π6
Relation

π7

And here is the code:

\sdrtree{&&&\LAB{\labone}\cons[dll]\srel[drr]{Relation}\\

&\LAB{\labtwo}\consl\srelr{Relation}\crel[rrrr]{Relation}&&&&\LAB{\labthree}\consl\consr\\

\LAB{\labfour}\crel{Relation}&&\LAB{\labfive}&&\LAB{\labsix}\crel{Relation}&&\LAB{\labseven}\\

}

Of course, ifπ5 had a right daughter andπ6 a left one, they would both be in the same column asπ1 and
thus would merge together. In fact, you have to calculate therelative position of the nodesbefore you draw
the tree, in order to know how many columns will be used. Fortunately, trees for discourse structures aren’t
syntactic trees and are in general far more simple, so drawing them is rather easy.

2.3 Definitions of the commands

(This section might be skipped if you don’t want to know how trees are defined in terms of thexyling.sty
package and how to modify the adjustment.)

Here is the code for the commands above.

\newcommand{\sdrtree}[1]{\Treek[1]{2}{#1}}

\newcommand{\LAB}[1]{\K{ #1}}

\newcommand{\cons}[1][d]{\Bk{.5}{-2}{#1}}

\newcommand{\consl}{\Bk{1}{-2}{dl}}

\newcommand{\consr}{\Bk{1}{-2}{dr}}

\newcommand{\srel}[2][d]{\ARk{.5}{-2}{#1}^{$#2$}}

9

\newcommand{\srell}[1]{\ARk{1}{-2}{dl}_{$#1$}}

\newcommand{\srelr}[1]{\ARk{1}{-2}{dr}^{$#1$}}

\newcommand{\crel}[2][rr]{\GBkk{3,2.5}{-1.7,-3.5}{#1}{->}_{$#2$}}

I defined\sdrtree to have good-looking depth and width of the tree. If you want to modify them be-
cause they aren’t satisfying to you, use\Treek[width]{depth}{tree} instead. For instance, here’s the
previous tree with a modified width:

π1

Relation

π2

RelationRelation
π3

π4
Relation

π5 π6
Relation

π7

I just replaced\sdrtreewith \Treek{2}: since the width is an optional argument, not specifying it makes
it 0. Thus,\Treek{2} is equivalent to\Treek[0]{2}. Note that negative values are allowed.

\cons, \consl\consr are made of\Bk which takes three arguments: vertical alignment of the starting
node, vertical alignment of the target, and the direction asdiscussed above.ARk works the same. Finally,
\GBkk, which is used to define\crel, has the following structure: the first argument specify thehorizontal
and vertical alignment of the starting node (seperated by a comma), the second argument specify the same
thing for the target, the third argument is the direction, the fourth is the form of the arrow, and the last is
the name of the relation. Finally, notice that\LAB has a space before its argument. Inxyling, nodes are
centered, but that centering don’t look good withπ when it has a superscript or a subscript. That extra space
makes it look better, although it won’t be nice with a bareπ. In general, nodes in SDRT all have a sub- or
superscript, so it’s fine. However, if you don’t want that space, juste use the original\K command, which is
the usual one for nodes inxyling. Finally, note that the name of the relations are in math modeto get the
right italics.

3 List of symbols used in SDRT

3.1 Notation index

I won’t explain every symbol. Rather, I will reproduce the ‘notation index’ of Asher & Lascarides’Logics
of Conversation, with the corresponding code. Comments in the left column are theirs.

1. Information Content: Object Language
Variables denoting individuals x, y,... Usex, y and so on (math mode is use-

less in a (S)DRS, since it is automatically
in math mode). If there is a subscript, use
\varsub{variable}{subscript}.

Variables denoting eventualities e1, e2,... Use\varsub{variable}{subscript}.
Action terms a1, a2,... Use\varsub{variable}{subscript}.
Propositional terms p, p1,... Use \varsub{variable}{subscript}

or simplyp.
The logical connectives and opera-
tors

I did not write any special macro for these,
since they are very common. Moreover, a
new command usually gobbles subsequent
space and might conflict with other exist-
ing commands (since they’re renamed in
many packages). Don’t forget math mode,
or LATEX will moan, except in a (S)DRS.

10

∧ \wedge

∨ \vee

⇒ \Rightarrow

> $>$ (if you don’t use math mode it will
produce ¿).

¬ \neg

� \square (you have to load the
amsfonts package in your preamble)

3 \Diamond (you have to load the
wasysym package in your preamble)

The proposition expressed by the
formulaK

∧K \intens{K} or anything you want in the
argument.

This symbol is not in the ‘notation
index’ but it is the counterpart of the
previous one, so it might be useful
in formal semantics in general

∨K \extens{K} or anything you want as the
argument.

(S)DRSs K1,K2,... Use\varsub{variable}{subscript}.
The universe of discourse referents
of the DRSK

UK \varsub{U}{K}.

The set of conditions of the DRSK CK \varsub{C}{K}. Of course, with this one
or the previous one, you could type some-
thing likeCπ′

2
by putting\lab[]{} in the

second argument hole.
The action of bringing it about that
K is true

δK \true{K} or anything you want as the ar-
gument.

A formula, conveying: ifa (or δK)
is performed, theφ necessarily (or
possibly for〈a〉φ) follows.

[a]φ, [δK]φ,
〈a〉φ, 〈δK〉φ

\necess{a}{\phi} and
\possib{a}{\phi}

K is a DRS,γ is a DRS condition,
andK∩γ =def 〈UK , ConK ∪ γ〉

K∩γ \append{K}{\gamma}. =def is just
\varsub{=}{def}, 〈 and 〉 are\langle
and\rangle, all of them in math mode.

A DRS which summarises the con-
tent inK andK ′

K ⊓K ′ \summary

labels for DRSs and action terms α, β, ..., π1, π2,... Use greek letters (in math mode) or\lab

An SDRS:A is a set of labels,F is
a function which assigns labels inA
SDRS-formulae, ansLAST ∈ A

〈A,F , LAST 〉 \aflast. A and LAST are of course
the same letters in math mode, whileF is
\mathcal{F}, and∈ is \in

About F : An expression likeF(π2) may be useful. So we haveflab[]{}, which works once again exactly
like \lab, i.e. optional primes as the first argument and subscript as the second. Similarly,\fklab[’]{2},
for instance, yieldsF(π′

2) = Kπ′

2
, just like \klab[]{}. Finally, there is also an ‘easy’ version for both

of them, namely\flabone, \flabtwo... \flabnine and\fklabone, \fklabtwo... \fklabnine. They
also eats subsequent space, so use\ (e.g.\flabnine\) when needed.

Now, let’s get back to our notation index:

The formulaF(πα), that’s labelled
byα

Kα Use\varsub. No math mode needed for
α, sincevarsub automatically launches it
when needed.

The main eventuality that’s intro-
duced inKα

eα Use\varsub

Rhetorical relations ⇓, Narration,
Contrast,...

⇓ is produced by\topic, but it gobbles
subsequent space. So add a\when it might
be a problem. Other relations are just text
in math mode.

11

The disputed counterpart to the re-
lationR

Dis(R) Simply Dis(R) in math mode, i.e.
$Dis(R)$.

Label φ labels formulaK (i.e.,
F(π) = K)

π : K This ‘bare’ version is simply
$\lab{} : K$. For more elaborated
stuff (i.e. with sub- and/or superscript),
use\klab and\klabstar.

The formula representing the ‘ex-
tra content’, over and aboveKα and
Kβ, that must be true (or, more ac-
curately, that must update the con-
text) forR(α, β) to update the con-
text

φR(α, β) \varsub{\phi}{R}(\alpha, \beta)

in math mode.

An individual term denoting the
agent who conveyed/uttered the
content that’s labelledα

S(α) S(\alpha) in math mode

AgentA believes thatK BA(K) \believes[content]{agent}. The
content is optional since we will needBA

later. By the way,B is produced with
\mathcal{B} in math mode.

AgentA intends the actiona IA(a) \intends[action]{agent}. the action
is optional for the same reason as above.
I is produced with\mathcal{I} in math
mode.

The speech act related goal of the
utterance labelledα is the action
δ∨p

SARG(α, p) \sarg{\alpha}{p}. This command
won’t work in math mode, because of
small capitals. So, although you might
never use it, here is the code:
\scshape sarg\upshape\ensuremath{(#1, #2)}.
When in math mode, just add a $ before
\scshape and between\upshape and
\ensuremath.

2. Information Content: Metalanguage
Possible worlds (in the model) w,w′, w1, w2,... Usew, $w’$ or \varsub.
Variable assignment functions f, g, ... Use math mode.
The domaine off dom(f) dom(f) in math mode.
g extendsf .
I.e., dom(f) ⊆ dom(g) and∀x ∈
dom(f), f(x) = g(x)

f ⊆ g Write f \extends g. By the way, the
code for∀x is \forall x and the one for
∃x is \exists x, both in math mode.

The formula (or action term)K re-
lates the input context(w, f) with
the output context(w′, g)

(w, f)[[K]]M(w′, g) Use \ccp[optional world index]

{input pair}{formula}{output pair}.
If you happen to need [[and]], I designed
\Lbracket andRbracket, so you won’t
have to load any package.

Γ monotonically entailsφ (model
theory)

Γ |= φ orΓ |=f φ Use\entm[] whose optional argument is
the subscript.

Γ monotonically entailsφ (proof
theory)

Γ ⊢ φ or Γ ⊢f φ Use\entp[] whose optional argument is
the subscript.

3. Underspecified Information Content: The LanguageLulf

First of all, Lulf is typed with \lulf,
which eats subsequent space, so use an ex-
tra\.

12

The translation function form the
ULFs to the unlabelled language

ν \trfunc

Labels l1, l2,... Use\varsub.
Variables over labels ?1, ?2,... Use\varsub.
Higher order variables X,Y,R... X, Y, R in math mode or\varsub if

there is a subscript.
The predicate corresponding to the
constructorf from the base (unla-
belled) language

Rf Use\varsub.

A notational variant ofRf (l1,...,
ln+1), whereli labelsxi, 1 ≤ i ≤
n; e.g.,l : ∧(p, q) is shorthand for
R∧(lq, lp, l) ∧ p(lp) ∧ q(lq)

ln+1 : f (x1,...,
xn)

All those notations are just an efficient
use ofvarsub. Note that you can write
anything as the second argument, so for
instance\varsub{R}{\wedge} produce
R∧.

Gloss for∃Y (R=(lx, ly, l) ∧Rx(lx)
∧ Y (ly))

x =? Simply $x =?$, and once againvarsub
for the notations in the left column.

Labell outscopesl′ l ≻ l′ \outscopes.
The conditions inl are accessible to
those inl′

l ≻a l
′ \varsub{\outscopes}{a}

4. Underspecified Information Content: Metalanguage
The set of all labels in the model U JustU in math mode.
Successor relation on labels (corre-
sponds toimmediately outscopes).

Succ, SuccD UseSucc in math mode or\varsub.

The interpretation fonction I JustI in math mode.
The satisfaction relations of the la-
belled language (this is different
from |=f)

|=l \entm[l].

5. Glue Logic: Object Language
A ULF (which in the glue language
forms a one-place predicate)

K \ulf

Individual variables x, y, ... Use math mode.
Labels π1, π2, α, β... \lab and greek letters.
An example of a formula that’s
transferred via⊢tr into the glue lan-
guage from other more expressive
languages (e.g., from the logic of
information content)

push(e, x, y, π2) Use math mode and simply write your text.

The SDRSKl (i.e.,(λ)) includes as
a conjunct some rhetorical relation
connectingα andβ

?(α, β, λ) Same as above: math mode!

in the SDRS〈A,F〉, wherel ∈ A,
F(λ) includesR(α, β) as one of its
conjuncts.

R(α, β, λ) Once again: math mode!

As in the language of information
content

∧,∨,→,¬, > As above, except that→ is \rightarrow

(i.e., without a capital letter).
The information about content
that’s transferred fromK into the
glue logic, whereK is a set of
formulae of the ULF-logic

Info(K) Info(\mathcal{K}) in math mode.

13

σ outscopes α and nothing
outscopesσ

Top(σ, α) Simple text in math mode.

There is evidence in the discourse
σ thatα is a subtype ofβ; similarly
for causeD(σ, α, β)

subtypeD(σ, α, β) Usevarsub

A schema, which one can replace
with the aktionsart ofα and β,
whatever their values

Aspect(α, β) Text in math mode.

The formulaα′ labels is just like
that labelled byα, save that the
former resolves some or all of the
underspecifications that’s present in
the latter.

α ; α′ This arrow is produced with\resolves.

A DRS which is the same asK,
save that some of the underspecified
conditions inK are resolved inK+

K+ Use \kstar, which can be an ar-
gument of \varsub, so you can
write, for instance, K+

π′

5
with

\varsub{\kstar}{\lab[’]{5}}.
At the part labelledλ2 in the dis-
course structure, the contentKλ1

thatλ1 labels (and which in turn is
outscoped byλ2) is settled.

settled(λ1, λ2) Use text in math mode and\varsub.

Type declarations, respectively:α
labels an indicative, interrogative,
imperative

α : |, α :?, α :! Simple math mode once again.

6. Glue Logic: Metalanguage
Γ monotonically entailsφ (model
theory)

Γ |= φ or Γ |=g φ Use \entm with optional subscript (be-
tween brackets).

Γ monotonically entailsφ (proof
theory)

Γ ⊢ φ or Γ ⊢g φ Use \entp with optional subscript (be-
tween brackets).

Γ nonmonotonically entails φ
(model theory)

Γ|≈φ or Γ|≈gφ Use\nmentm with optional subscript (be-
tween brackets).

Γ nonmonotonically entails φ
(proof theory)

Γ|∼φ or Γ|∼gφ Use\nmentp with optional subscript (be-
tween brackets).

An extension of the theoryT T→ \thext, which of course can be argument
of \varsub to produce things likeT→

max as
usual.

Ant(T) =def {C : T ⊢ C > D} Ant(T) Here is how to write the formula in the left
column:
Ant(T)\varsub{=}{def}\{C:T\entp C>D\}

The whole in math mode, of course. As
you can see, the only thing you have to
pay attention to is the braces, which are
one of the special characters of LATEX. To
typeset them, you have to write\{ and\}.

14

7. Discourse Update
The transfer relation from (richer)
sources of information to the glue
language

⊢tr \entp[tr]

The set of labels to whichβ is at-
tached

att− sites(β) Text in math mode.

The set of available attachment sites
in the set ofSDRSsσ

avail− sites(σ) Text in math mode.

{〈α, l〉 : α ∈ avail − sites(σ) and
SuccD(l, α)}

avail− pairs(σ) Text in math mode. The left column is
written just like the definition ofAnt(A).
Note that ‘and’ mustn’t be in math mode,
so you have to stop it before and start it
again after.

The set of all possible sequences
of all possible subsets ofavail −
pairs(σ)

P(avail −
pairs(σ))

P is \mathcal{P} in math mode, and
you must have guessed how the rest was
typed...

The SDRT update function from an
old context and new information to
a new context.

updateSDRT Use\update. Note that this was designed
thanks to thesubscript.sty package. I
rewrote that part of the code insdrt.sty
so you won’t have to (down)load it.
By the way, this won’t work in math
mode. To yieldBest-updateSDRT, write
\bestupdate.

A set ofSDRSs σ Greek letter sigma.
The set of allULF-formulaeφ such
that for allSDRSs inσ, s |=l φ

Th(σ) Math mode

The simple update ofσ with
the (assumption about) attachment
?(α, β, λ)

σ+?(α, β, λ) Math mode.

The sequence of simple updates of
σ with ?(α, β, λ) for each〈α, l〉 ∈
X

ΣX(σ,Kβ) This might seem complicated, but this is
not. Here is the code:
\varsub{\Sigma}{X}

(\sigma, \varsub{\mathcal{K}}{\beta})

Downdating: the set of the biggest
bits of σ that you can retain while
ensuring that the result does not en-
tail φ.

σ ↓ φ Use\downdate to draw↓.

σ with all R(γ, α, λ) where
φ(R) retracted, and replaced with
Dis(R)(γ, α, λ)

σ ⇓φ α Use \varsub{\topic}{\phi} to yield
⇓φ.

Simple revision (which generalises
update)

σ⊗?(α, β, λ) \revision to produce⊗.

8. Cognitive Modelling Language
There is nothing new in that section. Everything is made of\varsub or math mode. You
already know thatB is \mathcal{B} in math mode.
Propositional variables p1, p2, q, q

′,...
Action terms a1, a2,...
Labelled propositional variables pα, pπ Of course, you could write something like

pπ′

r
with \varsub{p}{\lab[’]{r}}.

15

Labelled action terms aα, aπ Same comment.
An action term, corresponding to
the action of seeing to it thatφ is
true

δφ \true{} as above.

The speaker who conveyed the con-
tent associated withα; and the
hearer of that content

S(α), H(α)

AgentA believes that; AgentA in-
tends that;A andB mutually be-
lieve that

BA, IA,MBA,B Use believes{agent} and
\intends{agent} without the op-
tional argument. MBA,B is simply
\varsub{MB}{A,B}.

A’s choice for fulfilling the action
δψ is to carry out the actionδφ

choiceA(φ, ψ) \varsub and math mode.

The action ofS(α) utteringα Say(α) Use math mode.
The actiona has been performed Done(a) Use math mode.
p is an answer to the question la-
belled byα

Sanswer(α, p) Use math mode.

3.2 Additional symbols

Wandering throughLogics of Conversation, one can realize that the above notation index is not sufficient to
typeset all formulae inSDRT . So here are some more useful symbols.

First of all, a ‘superscript’ variant of\varsub{}{} will be interesting. It is simply\varsup{}{}. So
you can type, for instance,Ksup with \varsup{\ulf}{sup}. Note that\varsub and\varsup can be ar-
guments of each other. So you can type complex stuff likeKsup

sub with \varsub{\varsup{\ulf}{sup}}{sub}.
Note that\varsup{\varsub{\ulf}{sub}}{sup}will yield exactly the same thing.

Now, here are some more symbols, with the code:

∪ \cup in math mode
◦ (to define[[a1; a2]]) \circ in math mode
K1 ≤ K2 (accessibility relation) \access

K := Definition Simply:=
ℓ (in models forLulf) \ell in math mode
e ≺ now (temporal precedence) \tempprec

X \mathcal{X} in math mode
Rf

Y
(in the interpretation of the labelled language)frac{above}{below} in math mode

Negated versions of inference operators:
6|= \Nentm

6⊢ \Nentp

|6≈ \Nnmentm

|6∼ \Nnmentp
⋃

X∈Sσ

(in SDRT Update) \union{limit}

α ⊔ β \merging

x ⊑ y \subtype

Many relations can be negated with the prefix\not (which needs math mode). Thus\not\extends
yields 6⊆ and\not\in yields 6∈. Finally, if you want to draw HPSG-like AVMs for lexical semantics, use
Christopher Manning’savm.sty package.

4 Math mode or not?

I am aware of the fact that the many mentions of ‘math mode’ might be very confusing, and that in the end
you might not know when to use it. Moreover, maybe you are a newLATEX user and you ignore what math
mode is and why so many $ are appearing here and there along these pages. So first of all, a definition: math
mode is a pair of $ between which math formulae are nicely formatted. So it is good. However, there is

16

another feature that I can’t explain to me: some commands (those in the menu item named ‘math’ in TeXnic-
Center)need math mode. Greek letters for instance. If you write\alpha is a nice letter, it will type
‘α is a nice letter’, but, since\alpha is not surrounded by $, LATEX will moan ‘Missing $ inserted’,
and you’ll have two errors. Fortunately, all the macros in this package ‘control’ their ‘math-modality’4.

The following commands don’t need math mode, nor do their argument(s) need it. For instance,
varsub{}{} don’t need math mode and you don’t need to write\alpha between $ if you wantα as
one of the arguments.

\lab[]{}, and all its variants:\labone, \klab, \flab, etc.

\SDRS \PSDRS

\varsub{}{} \varsup{}{}

\intens{} \extens{} \true{}

\necess{}{} \possib{}{}

\append{}{}

\summary

\aflast

\topic

\believes[]{} \intends[]{}

\sarg{}{}

\extends

\ccp[]{}{}{}

\entm[] \entp[] \nmentm[] \nmentp[] \Nentm[] \Nentp[] \Nnmentm[] \Nnmentp[]

\lulf

\trfunc

\outscopes

\ulf

\resolves

\kstar

\thext

\downdate \revision \access \tempprec

\union{}

\merging

\subtype

As we have seen above with (S)DRSs, math mode has side-effects that you might want to avoid. For
instance, normal text will be in italics and without space between words. So you have to interrupt math
mode when needed (though normally you won’t need it much in SDRT), with additional $. Thus, for
instance,BA(my sentence) is typeset with\believes[$my sentence$]{A}.

On the other hand, greek letters, logical connectors, various calligraphic letters (i.e. produced with
\mathcal{}) and the symbols∈ (\in), ∪ (\cup), ◦ (\circ), ℓ (\ell) above

below
(\frac{above}{below})

need math mode. That is, either they’re written between $ or they’re arguments of one of the commands
above. Thus you’ll write\intens{\alpha}andnever \intens{α},or$\alpha \outscopes \beta$

(although\outscopes doesn’t need it, it won’t cause any trouble).
The advantage of automatic math mode is that those commands are launched in the same way in math

environment or in text:\outscopes produces≻ in the last example and in a phrase like ‘The≻ relation’.
Just note that in text, those commands that don’t take arguments will eat subsequent space, so actually you
have to write ‘the \outscopes\ relation’ when space is needed. Finally, variables without\varsub

or \varsup, as well as predicates, need math mode (or any of the commandsabove) to be typed properly,
i.e. if you write justown(x, y), you will get ‘own(x, j)’ and not ‘own(x, j)’.

4Thanks to the \ensuremath command.

17

5 Bugs and enhancements

5.1 Problems

I made the symbols for non-monotonic entailment out of two other symbols:| and≈ for |≈ and| and∼ for
|∼. I looked for them everywhere, but I wasn’t able to find them, that’s why I designed them that way (since
I don’t know how to draw glyphs). They seem to work well, but they might sometimes mess up when LATEX
adjusts the filling of a line, especially in tables, so you might have to work out some adjustment yourself.
Note that it sometimes moves from PS to PDF. That’s the reasonwhy I did not designed a nicer⊢ whose
branches would be of the same lenghth as those of|= (notice by the way that in every SDRT papers that
I read,⊢ never matched the lenghth of|=; but Logics of Conversation, at least, was explicitely done with
LATEX). The same holds for [[and]]. Although they exist in some packages, they didn’t look good to me,
and anyway I wanted to avoid requiring many packages.

There is another problem, but this one seems to pervade through TEX in general, namely the ‘double sub-

script’ problem. If you want to print a complex stuff like|= g
ℓ
v

l (which is needed in the interpretation of the
labelled language), you can type\varsup{\varsub{\entm}{l}}{\varsup{g}{\frac{\ell}{v}}},
but you will have one error (‘double subscript’). Moreover,the sub- and the superscripts are not next to the
entailment symbol. If you ‘recreate’|= out of | and = (as I did for|∼ and|≈), however, you will have no
problem.\varsup{\varsub{|\hspace{-5pt}=}{l}}{\,\varsup{g}{\frac{\ell}{v}}} will print

|=g
ℓ
v

l .

5.2 Things that could be improved

A ‘generalized’ math mode could be interesting. I didn’t renamed the logical operators nor the greek let-
ters, since you might use many packages, and it could conflictwith them. But here is a simple way to
use math symbols in both math and text modes. Imagine you wantα to work so, for instance. Then cre-
ate a new command, namely\newcommand{\Alpha}{\ensuremath{\alpha}}. Of course, you could
name it whatever you want, and ‘\Alpha’ is just an example. With that command, you won’t have to
bother with math mode anymore, it will be automatic when needed. Notice that a command of the form
\newcommand{\Alpha}{α} would not do: in math mode, it would create an inner pair of $ that
would interrupt it, and thus the greek letter would be in textmode. On the contrary,\ensuremath{} does
not launch math mode when already in it. The only problem is that commands of that kind (without argu-
ment) eat subsequent space (and thus may require a suffixed\). You could use thexspace.sty package,
that controls when subsequent space is needed or not. I didn’t use it because it yielded bad results with
predicates (the right parenthesis was preceded by a blank).

Apart from that, you might have noticed that the arrowheads in trees don’t resemble the ones in SDRT.
There is no such arrowheads inxypic, and I’m not able to draw them. This would be nice however if
it could be done, but it would require another drawing package, and hence rewriting another code for the
trees.

Finally, I did not attempt at drawing the diamond-shaped boxthat one encounters in DRT to handle
donkey sentences, because I was not able to draw them properly. Note however that thexytree.sty
package, which requiresxypic too, has a command\drsdiabox to draw them. There are two problems
with xytree.sty: first, its \drsdiabox command yields a shivering box. I think the reason is that this
package requiresxypic without the dvips option. Thus, there is no problem with PDFTeX, but all diagonal
lines are ugly. Moreover, the diamond box is not stuck to the other boxes, as it should be. I think however
that it is easy to fix. The second problem is the following. Compare those two boxes:

dog(x)
own(j,x)

x, j
x, j

dog(x)
own(j, x)

The boxes themselves are not at stake. But if you take a look atthe shape of the text, you can observe that
there are two kinds of italics. The ones in the left box (made with xytree) are produced with the\itshape
command, while the italics in the right box (made withsdrt) are the result of math mode. The fact is that

18

all italics in SDRT papers, either in a box or in text, are produced with math mode, and not with\itshape
or \emph{}. See the difference:

$background$ background

\emph{background},\itshape background and\textit{background} background
\slshape background background

Math mode also prevents parentheses from being in italics, as usual with math formulae. Thus,xytree is
not adequate to draw proper boxes.

19

